首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccines exert strong selective pressures on pathogens, favouring the spread of antigenic variants. We propose a simple mathematical model to investigate the dynamics of a novel pathogenic strain that emerges in a population where a previous strain is maintained at low endemic level by a vaccine. We compare three methods to assess the ability of the novel strain to invade and persist: algebraic rate of invasion; deterministic dynamics; and stochastic dynamics. These three techniques provide complementary predictions on the fate of the system. In particular, we emphasize the importance of stochastic simulations, which account for the possibility of extinctions of either strain. More specifically, our model suggests that the probability of persistence of an invasive strain (i) can be minimized for intermediate levels of vaccine cross-protection (i.e. immune protection against the novel strain) and (ii) is lower if cross-immunity acts through a reduced infectious period rather than through reduced susceptibility.  相似文献   

2.
Rubella is a completely immunizing and mild infection in children. Understanding its behaviour is of considerable public health importance because of congenital rubella syndrome, which results from infection with rubella during early pregnancy and may entail a variety of birth defects. The recurrent dynamics of rubella are relatively poorly resolved, and appear to show considerable diversity globally. Here, we investigate the behaviour of a stochastic seasonally forced susceptible–infected–recovered model to characterize the determinants of these dynamics and illustrate patterns by comparison with measles. We perform a systematic analysis of spectra of stochastic fluctuations around stable attractors of the corresponding deterministic model and compare them with spectra from full stochastic simulations in large populations. This approach allows us to quantify the effects of demographic stochasticity and to give a coherent picture of measles and rubella dynamics, explaining essential differences in the recurrent patterns exhibited by these diseases. We discuss the implications of our findings in the context of vaccination and changing birth rates as well as the persistence of these two childhood infections.  相似文献   

3.
Critical population phase transitions, in which a persistent population becomes extinction-prone owing to environmental changes, are fundamentally important in ecology, and their determination is a key factor in successful ecosystem management. To persist, a species requires a suitable environment in a sufficiently large spatial region. However, even if this condition is met, the species does not necessarily persist, owing to stochastic fluctuations. Here, we develop a model that allows simultaneous investigation of extinction due to either stochastic or deterministic reasons. We find that even classic birth–death processes in spatially extended ecosystems exhibit phase transitions between extinction-prone and persistent populations. Sometimes these are first-order transitions, which means that environmental changes may result in irreversible population collapse. Moreover, we find that higher migration rates not only lead to higher robustness to stochastic fluctuations, but also result in lower sustainability in heterogeneous environments by preventing efficient selection for suitable habitats. This demonstrates that intermediate migration rates are optimal for survival. At low migration rates, the dynamics are reduced to metapopulation dynamics, whereas at high migration rates, the dynamics are reduced to a multi-type branching process. We focus on species persistence, but our results suggest a unique method for finding phase transitions in spatially extended stochastic systems in general.  相似文献   

4.
RNA viruses exist as genetically diverse populations displaying a range of virulence degrees. The evolution of virulence in viral populations is, however, poorly understood. On the basis of the experimental observation of an RNA virus clone in cell culture diversifying into two subpopulations of different virulence, we study the dynamics of mutating virus populations with varying virulence. We introduce a competition–colonization trade-off into standard mathematical models of intra-host viral infection. Colonizers are fast-spreading virulent strains, whereas the competitors are less-virulent variants but more successful within co-infected cells. We observe a two-step dynamics of the population. Early in the infection, the population is dominated by colonizers, which later are outcompeted by competitors. Our simulations suggest the existence of steady state in which all virulence classes coexist but are dominated by the most competitive ones. This equilibrium implies collective virulence attenuation in the population, in contrast to previous models predicting evolution of the population towards increased virulence.  相似文献   

5.
Infectious diseases that kill their hosts may persist locally only if transmission is appropriately balanced by susceptible recruitment. Great apes die of Ebola virus disease (EVD) and have transmitted ebolaviruses to people. However, understanding the role that apes and other non-human primates play in maintaining ebolaviruses in Nature is hampered by a lack of data. Recent serological findings suggest that few non-human primates have antibodies to EVD-causing viruses throughout tropical Africa, suggesting low transmission rates and/or high EVD mortality (Ayouba A et al. 2019 J. Infect. Dis. 220, 1599–1608 (doi:10.1093/infdis/jiz006); Mombo IM et al. 2020 Viruses 12, 1347 (doi:10.3390/v12121347)). Here, stochastic transmission models of EVD in non-human primates assuming high case-fatality probabilities and experimentally observed or field-observed parameters did not allow viral persistence, suggesting that non-human primate populations are highly unlikely to sustain EVD-causing infection for prolonged periods. Repeated introductions led to declining population sizes, similar to field observations of apes, but not viral persistence.  相似文献   

6.
Transmission of dengue fever depends on a complex interplay of human, climate and mosquito dynamics, which often change in time and space. It is well known that its disease dynamics are highly influenced by multiple factors including population susceptibility to infection as well as by microclimates: small-area climatic conditions which create environments favourable for the breeding and survival of mosquitoes. Here, we present a novel machine learning dengue forecasting approach, which, dynamically in time and space, identifies local patterns in weather and population susceptibility to make epidemic predictions at the city level in Brazil, months ahead of the occurrence of disease outbreaks. Weather-based predictions are improved when information on population susceptibility is incorporated, indicating that immunity is an important predictor neglected by most dengue forecast models. Given the generalizability of our methodology to any location or input data, it may prove valuable for public health decision-making aimed at mitigating the effects of seasonal dengue outbreaks in locations globally.  相似文献   

7.
Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator–prey and host–pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host–pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.  相似文献   

8.
A standard assumption in the modelling of epidemic dynamics is that the population of interest is well mixed, and that no clusters of metapopulations exist. The well-known and oft-used SIR model, arguably the most important compartmental model in theoretical epidemiology, assumes that the disease being modelled is strongly immunizing, directly transmitted and has a well-defined period of infection, in addition to these population mixing assumptions. Childhood infections, such as measles, are prime examples of diseases that fit the SIR-like mechanism. These infections have been well studied for many systems with large, well-mixed populations with endemic infection. Here, we consider a setting where populations are small and isolated. The dynamics of infection are driven by stochastic extinction–recolonization events, producing large, sudden and short-lived epidemics before rapidly dying out from a lack of susceptible hosts. Using a TSIR model, we fit prevaccination measles incidence and demographic data in Bornholm, the Faroe Islands and four districts of Iceland, between 1901 and 1965. The datasets for each of these countries suffer from different levels of data heterogeneity and sparsity. We explore the potential for prediction of this model: given historical incidence data and up-to-date demographic information, and knowing that a new epidemic has just begun, can we predict how large it will be? We show that, despite a lack of significant seasonality in the incidence of measles cases, and potentially severe heterogeneity at the population level, we are able to estimate the size of upcoming epidemics, conditioned on the first time step, to within reasonable confidence. Our results have potential implications for possible control measures for the early stages of new epidemics in small populations.  相似文献   

9.
We propose a new stochastic framework for analysing the dynamics of the immunity response of wildlife hosts against a disease-causing agent. Our study is motivated by the need to analyse the monitoring time-series data covering the period from 1975 to 1995 on bacteriological and serological tests-samples from great gerbils being the main host of Yersinia pestis in Kazakhstan. Based on a four-state continuous-time Markov chain, we derive a generalized nonlinear mixed-effect model for analysing the serological test data. The immune response of a host involves the production of antibodies in response to an antigen. Our analysis shows that great gerbils recovered from a plague infection are more likely to keep their antibodies to plague and survive throughout the summer-to-winter season than throughout the winter-to-summer season. Provided the seasonal mortality rates are similar (which seems to be the case based on a mortality analysis with abundance data), our finding indicates that the immune function of the sampled great gerbils is seasonal.  相似文献   

10.
Seasonal changes in the environment are known to be important drivers of population dynamics, giving rise to sustained population cycles. However, it is often difficult to measure the strength and shape of seasonal forces affecting populations. In recent years, statistical time-series methods have been applied to the incidence records of childhood infectious diseases in an attempt to estimate seasonal variation in transmission rates, as driven by the pattern of school terms. In turn, school-term forcing was used to show how susceptible influx rates affect the interepidemic period. In this paper, we document the response of measles dynamics to distinct shifts in the parameter regime using previously unexplored records of measles mortality from the early decades of the twentieth century. We describe temporal patterns of measles epidemics using spectral analysis techniques, and point out a marked decrease in birth rates over time. Changes in host demography alone do not, however, suffice to explain epidemiological transitions. By fitting the time-series susceptible–infected–recovered model to measles mortality data, we obtain estimates of seasonal transmission in different eras, and find that seasonality increased over time. This analysis supports theoretical work linking complex population dynamics and the balance between stochastic and deterministic forces as determined by the strength of seasonality.  相似文献   

11.
Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman''s ρ = 0.65, p < 0.05). We then examine seasonal patterns of rotavirus predicted across a range of different birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.  相似文献   

12.
The cornerstone of today''s plant virology consists of deciphering the molecular and mechanistic basis of host–pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within- and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses.  相似文献   

13.
Models that deal with the individual level of populations have shown the importance of stochasticity in ecology, epidemiology and evolution. An increasingly common approach to studying these models is through stochastic (event-driven) simulation. One striking disadvantage of this approach is the need for a large number of replicates to determine the range of expected behaviour. Here, for a class of stochastic models called Markov processes, we present results that overcome this difficulty and provide valuable insights, but which have been largely ignored by applied researchers. For these models, the so-called Kolmogorov forward equation (also called the ensemble or master equation) allows one to simultaneously consider the probability of each possible state occurring. Irrespective of the complexities and nonlinearities of population dynamics, this equation is linear and has a natural matrix formulation that provides many analytical insights into the behaviour of stochastic populations and allows rapid evaluation of process dynamics. Here, using epidemiological models as a template, these ensemble equations are explored and results are compared with traditional stochastic simulations. In addition, we describe further advantages of the matrix formulation of dynamics, providing simple exact methods for evaluating expected eradication (extinction) times of diseases, for comparing expected total costs of possible control programmes and for estimation of disease parameters.  相似文献   

14.
Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks.  相似文献   

15.
Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.  相似文献   

16.
Identifying the mechanisms by which diseases spread among populations is important for understanding and forecasting patterns of epidemics and pandemics. Estimating transmission coupling among populations is challenging because transmission events are difficult to observe in practice, and connectivity among populations is often obscured by local disease dynamics. We consider the common situation in which an epidemic is seeded in one population and later spreads to a second population. We present a method for estimating transmission coupling between the two populations, assuming they can be modelled as susceptible–infected–removed (SIR) systems. We show that the strength of coupling between the two populations can be estimated from the time taken for the disease to invade the second population. Confidence in the estimate is low if only a single invasion event has been observed, but is substantially improved if numerous independent invasion events are observed. Our analysis of this simplest, idealized scenario represents a first step toward developing and verifying methods for estimating epidemic coupling among populations in an ever-more-connected global human population.  相似文献   

17.
18.
Models for infectious diseases usually assume a fixed demographic structure. Yet, a disease can spread over a region encountering different local demographic variations that may significantly alter local dynamics. Spatial heterogeneity in the resulting dynamics can lead to important differences in the design of surveillance and control strategies. We illustrate this by exploring the north–south gradient in the seasonal demography of raccoon rabies over the eastern USA. We find that the greater variance in the timing of spring births characteristic of southern populations can lead to the spatial synchronization of southern epidemics, while the narrow birth-pulse associated with northern populations can lead to an irregular patchwork of epidemics. These results indicate that surveillance in the southern states can be reduced relative to northern locations without loss of detection ability. This approach could yield significant savings in vaccination programmes. The importance of seasonality in many widely distributed diseases indicates that our findings will find applications beyond raccoon rabies.  相似文献   

19.
We develop mathematical models of the transmission and evolution of multi-strain pathogens that incorporate strain extinction and the stochastic generation of new strains via mutation. The dynamics resulting from these models is then examined with the applied aim of understanding the mechanisms underpinning the evolution and dynamics of rapidly mutating pathogens, such as human influenza viruses. Our approach, while analytically relatively simple, gives results that are qualitatively similar to those obtained from much more complex individually based simulation models. We examine strain dynamics as a function of cross-immunity and key transmission parameters, and show that introducing strain extinction and modelling mutation as a stochastic process significantly changes the model dynamics, leading to lower strain diversity, reduced infection prevalence and shorter strain lifetimes. Finally, we incorporate transient strain-transcending immunity in the model and demonstrate that it reduces strain diversity further, giving patterns of sequential strain replacement similar to that seen in human influenza A viruses.  相似文献   

20.
Stochastic fluctuations in the transmission process of microparasites generate a risk of parasite extinction that cannot be assessed by deterministic models, especially in host populations of small size. While this risk of extinction represents a strong selection pressure for microparasites, it is usually not clearly separated from the deterministic ones. We suggest here that this stochastic selection pressure can affect the selection of the transmission mode of microparasites. To avoid extinction, parasites should maximize their inter-population transmission to ensure frequent reintroductions. Since the types of contacts may differ if congeners belong to the same or distinct populations, strains that are mainly transmitted through inter-population contacts might be selected. To examine this assumption, we analyse the issue of the competition between two strains differing in their transmission mode using a stochastic metapopulation model in which hosts may display different behaviours inside and outside their populations. We show that stochastic selection pressures may drive parasite evolution towards a transmission mode that maximizes the persistence of the parasite. We study the conditions under which stochastic selection pressures may surpass the deterministic ones. Our results are illustrated by the cases of feline immunodeficiency virus in cats and of sexually transmitted diseases in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号