首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samarium-doped ZrB2/SiC (ZBS) coatings possess properties of high emissivity and excellent ablation performance suitable for hypersonic applications. Of interest in the current study is how cyclic ablation affects the scale development on alumina substrates. ZBS coatings with 3, 5 and 8 mol% of samarium (Sm) dopant were prepared via shrouded plasma spray onto alumina substrates and subjected to two 60-s ablation cycles with temperatures reaching up to 1700 °C. Blisters were observed on the Sm-doped coatings after the 1st cycle as a result of a local eutectic reaction between the ablation products and alumina substrate. A Sm-stabilized t-ZrO2 phase was identified through X-ray diffraction after the ablation of the Sm-doped coatings. The ZBS with 5 mol% of Sm dopant produced a flower-like microstructure after the 2nd cycle due to the formation of convection cells.  相似文献   

2.
ZrB2/SiC composite ceramics were fabricated to improve the electrical conductive properties of SiC matrix. The debinding and sintering temperatures were determined by computation of Gibbs free energy. As a result, all the samples have the relative density above 99%, and have excellent mechanical and electrical properties. The effects of ZrB2 content on the microstructure, mechanical and electrical properties were systematically studied. With increasing ZrB2 content, as-prepared composites show great improvement in their mechanical properties. Importantly, the introduction of ZrB2 weakened varistor nonlinear characteristic of composite and reduced its resistivity. The reason is the evolution of grain boundary in conductive paths. The sharp decrease of resistivity indicates the formation of percolation paths. The percolation threshold at 1?mA?cm?2 obtained via percolation model is 10.7963?vol% (19.7098?wt%) ZrB2. This value is much less than conventional composites, because the percolation path originates from grain boundary breakdown other than continuous conductor chains.  相似文献   

3.
Micro-cavities on the surface of dense ZrB2/20 vol.% SiC composites, machined by ultra-fast laser ablation, were filled with Gd2O3 nanopowder and oxidized in static air at 1600 °C. Optimized rectangular pattern of cavities, 10 μm diameter and deep, 20 μm apart conferred improved oxidation resistance compared to the untreated ZrB2/20 vol.% SiC due to the formation of glasses of higher viscosity with lower oxygen diffusivities. Reduction of the oxidized depth was revealed by a significant decrease of 10 μm (60%) in the extent of the protective layer. The filled-cavity strategy leads to better protection against oxygen diffusivity into the composite without altering the bulk properties.  相似文献   

4.
《Ceramics International》2016,42(15):16474-16479
A series of ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol% were prepared by reactive hot-pressing using Zr, B4C and SiC as raw materials. Self-propagating high-temperature synthesis (SHS) occurred, and ZrC grains connected each other to form a layered structure when the SiC content is below 20 vol%. The evolution of microstructure has been discussed via reaction processes. The composite with 10 vol% SiC presents the most excellent mechanical properties (four-point bending strength: 828.6±49.9 MPa, Vickers hardness: 19.9±0.2 GPa) and finest grain size (ZrB2: 1.52 µm, ZrC: 1.07 µm, SiC: 0.79 µm) among ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol%.  相似文献   

5.
SiC/20?wt% ZrB2 composite ceramics were fabricated via pressureless solid phase sintering in argon atmosphere at different temperature. The effect of sintering temperature on microstructure, electrical properties and mechanical properties of SiC/ZrB2 ceramics was investigated. Electrical resistivity exhibits twice significant decreases with increasing sintering temperature. The first decrease from 1900?°C to 2000?°C is attributed to the obvious decrease of continuous pore channels in as-sintered materials. The second decrease from 2100?°C to 2200?°C results from the improvement of carbon crystallization and the disappearance of amorphous layers enveloping ZrB2 grains. Additionally, the increase of sintered density with increasing temperature caused greatly advance of flexural strength, elastic modulus and Vickers hardness. But excessive temperature is detrimental to flexural strength because of SiC grain growth.  相似文献   

6.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   

7.
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800?°C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000?°C–1600?°C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.  相似文献   

8.
Zirconium diboride ceramics were prepared with additions of up to 50 vol.% TiB2. The resulting (Zr,Ti)B2 ceramics formed complete solid solutions based on x-ray diffraction. The addition of TiB2 resulted in grain size decreasing from 22 μm for nominally pure ZrB2 to 7 μm for ZrB2–50 vol.% TiB2. The thermal conductivity at 25°C ranged from 93 W/m⋅K for nominally pure ZrB2 to 58 W/m⋅K for ZrB2–50 vol.% TiB2. Thermal conductivity was as high as 67 W/m⋅K for nominally pure ZrB2 at 2000°C, but dropped to 59 W/m K with the addition of 50 vol.% TiB2. Electrical resistivity measurements were used to calculate the electron contribution to thermal conductivity, which was 76 W/m⋅K for nominally pure ZrB2 decreasing to 57 W/m⋅K when 50 vol.% TiB2 was added. The phonon contribution to thermal conductivity did not change significantly for ≤10 vol.% TiB2. Additions of ≥25 vol.% TiB2 reduced the phonon contribution to nearly zero for all temperatures.  相似文献   

9.
CaZrO3/ZrB2复合材料的无压烧结试验研究   总被引:1,自引:0,他引:1  
CaZrO3与(0-30vol.%)ZrB2在常压下可以直接烧结。CaZrO3基质中引入ZrB2,降低了材料的相对密度,不利于材料的致密化烧结。但ZrB2的引入抑制了CaZrO3晶粒度的长大,提高了材料的抗折强度。通过显微结构观察,认为其强化机制是ZrB2颗粒的弥散强化作用。CaZrO3/ZrB2复合材料的显微结构特征为粒状堆积结构。  相似文献   

10.
《Ceramics International》2017,43(18):16457-16461
ZrB2-SiC powders with different amounts of SiC (10–30 wt%) were in-situ synthesized at 1600 °C for 90 min in Ar atmosphere. Effects of SiC addition on the formation of ZrB2 via carbothermal reduction of ZrO2, H3BO3 and carbon black were investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and transmission electron microscope (TEM). The grain size of ZrB2 in final powders decreased with adding SiC. Columnar ZrB2 and granular SiC were combined interactively when the SiC content was 25 wt%. Layer-like hexagonal SiC was obtained in the product containing 30 wt% SiC, whereas the ZrB2 grain growth was strongly inhibited. Furthermore, the growth mechanisms of ZrB2 and SiC were studied.  相似文献   

11.
《Ceramics International》2020,46(8):12249-12254
The SiC nanowires (NWs) were fabricated by a simple chemical vapour deposition (CVD) method at high temperature using Si, phenolic resin, and ZrB2 powder. The morphologies of the fabricated SiC NWs included SiC/SiO2 chain-beads and straight wires with core-shell structures. The fabricated SiC NWs were micrometre-to-millimetre in length, with chains 100–300 nm in diameter and beads with diameters of less than 1 μm. The core-shell-structured SiC NWs consisted of crystalline SiC cores and thin amorphous SiO2 shells. SiC crystals grew in the [111] direction governed by a vapour-solid (VS) mechanism. The added ZrB2 promotes the generation of gaseous species at higher gas pressures, which contributes to the formation of SiC NWs by CVD. The fabricated SiC NWs exhibited good photoluminescence properties due to many stacking faults and the presence of amorphous SiO2.  相似文献   

12.
A novel ZrB2–Ti3AlC2 composite was densified using spark plasma sintering at 1900 °C under pressure of 30 MPa for 7 min. The effect of Ti3AlC2 MAX phase on the densification behavior, microstructural evolutions, phase arrangement, and mechanical properties of the composite were investigated. The phase analysis and microstructural studies revealed the decomposition of the MAX phase at the initial steps of the SPS process. The structural characteristics and surface morphology of the in-situ synthesized reinforcements were verified using X-ray diffraction and scanning electron microscopy, respectively. The formation mechanism of each reinforcement phase was also investigated using thermodynamical assessments. The prepared ZrB2–Ti3AlC2 composite not only possessed a near fully-dense characteristic having an excellent hardness of 31 GPa, but also unexpectedly presented high fracture toughness. The indentation fracture toughness of the composite was calculated as 7.8 MPa m1/2, which is unprecedented compared with the same class of hard ZrB2-based composites. Indeed, the superior mechanical properties of the composite achieved in this study was obtained by the homogenous distribution of Al-based reinforcements, formation of hard interfacial ZrC grains, and solid solutions provided by Ti-based phases. The correlations between the phase arrangement, microstructure, and the attained mechanical properties of the composite were comprehensively discussed.  相似文献   

13.
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added.  相似文献   

14.
《Ceramics International》2015,41(7):8388-8396
ZrB2–SiC–ZrO2 composites were hot pressed in order to investigate the effects of adding nano-sized ZrO2 particles as well as the hot pressing parameters on the densification behavior of ZrB2–SiC composites. An L9 orthogonal array of the Taguchi method was employed to study the significance of each parameter such as the sintering temperature, time, the applied external pressure, and ZrO2/SiC volume ratio on the densification process. The statistical analyses revealed that among the mentioned parameters, the hot pressing temperature had a great influence over the densification. By being hot pressed at 1850 °C for 90 min under 16 MPa, fully dense ZrB2-based composites were obtained. The relative density of the composites decreased at first and then enhanced as a function of ZrO2/SiC ratio. Microstructural investigation of the fracture surfaces of the composites, which was carried out using the SEM analysis, showed the formation of new phases on the surfaces of SiC grains. The EDS and XRD analyses identified the ZrC as the newly formed interfacial phase due to the reaction between nano-ZrO2 and SiC. The ZrC acted as an adhesive interphase between the ZrB2/SiC grains, which could assist the sintering process.  相似文献   

15.
The work is dedicated to researching into combustion kinetics and mechanism as well as the stages of the chemical transformations during self-propagating high-temperature synthesis of ZrB2-SiC based ceramics. Dependences of the combustion temperature and rate on the initial temperature (T0) have been studied. It has been shown that the stages of the chemical reactions of ZrB2 diboride and SiC carbide formation do not change within the range of T0?=?298–700?К. The effective activation energy of the combustion process amounted to 170–270?kJ/mol, from which it has been concluded that chemical interaction through the melt plays a leading role. The stages of the chemical transformations in the combustion wave have been studied by dynamic X-ray diffraction. First, ZrB2 phase forms from Zr-Si melt saturated with boron, and SiC phase is registered later. The SHS method has successfully been used in order to obtain ZrB2-SiC composite powders and compact ceramics with a silicon carbide content of 25–75%. The ceramics are characterized by a residual porosity of 1.5%, hardness up to 25?GPa, the elastic modulus of 318?±?21?GPa, elastic recovery of 36% and thermal conductivity of 54.9?W/(m?×?K) at Troom.  相似文献   

16.
A comparative study has been carried out on densification, microstructure, and creep with oxide-scale formation in ZrB2-20 vol.% SiC-(7, 10 or 14 vol.%) LaB6 composite containing B4C and C as additives, and prepared by spark plasma sintering at 1800 °C under 70 MPa ram pressure. Addition of LaB6 has promoted densification of composites by scavenging oxygen impurity, thereby increasing their hardness. Constant load compressive creep tests at 1300 °C under 47 and 78 MPa stresses have shown the lowest creep rate in the 10 vol.% LaB6 composite. The stress exponents obtained for composites having 10 vol.% LaB6 (~1.3 ± 0.1) and 14 vol.% LaB6 (~2.6 ± 0.2) suggest respectively, grain boundary diffusion with intergranular glassy phase formation and dislocation glide as operating mechanisms. Intergranular cracking caused by grain boundary sliding appears as the damage mechanism. Oxide scales formed during creep exhibit greater thickness and defect concentration than those by isothermal exposure at 1300 °C within similar duration.  相似文献   

17.
ZrB2-15 vol% MoSi2 ceramics were hot pressed in CO/CO2 atmosphere in the 1700–1900oС temperature range. During hot pressing, MoSi2 decomposes into Mo and Si and the phase composition of the as-sintered ceramic results in ZrB2, (Zr, Mo)B2, SiC, SiO2, and MoB. Contact melting between ZrB2 and MoSi2 was observed at 1800oC, corresponding to the formation of (Zr, Mo)B2. Ceramics obtained at1800–1850oС had ∼ 500 МPа and 200 MPa strength at room at 1800oC in vacuum, respectively. The thickness of the oxidized scales upon exposing the samples at 1600 oC for 120 min was 30–80 µm and depended on the amount of residual MoSi2 and (Zr, Mo)B2. The highest oxidation resistance was observed for the ceramic sintered at 1850 °C.  相似文献   

18.
Rod-like ZrB2 powders were synthesised at 1500°C in vacuum by boro/carbothermal reduction using ZrO2, B4C and graphite as the starting materials. During the heating process, the ZrB2 grains primarily grow along the c axis to form a rod-like morphology without any heterogeneous catalyst. The final products are pure rod-like ZrB2 particles, which are thought to be promising starting powders to prepare high performance ultrahigh temperature ceramics with unique microstructures such as textured one through tape casting process.  相似文献   

19.
ZrB2 powders were successfully prepared via carbothermal reduction of ZrO2 with H3BO3 and carbon black under flowing argon. By introducing SiC species into reaction mixtures, the effects of SiC addition on phase composition and morphology of ZrB2 powders thermally treated at different temperatures were investigated. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). The highly pure ZrB2 with the mean size of 5?µm could be obtained at 1600?°C for 90?min and the grains presented columnar shapes. After addition of SiC, ZrB2 revealed relatively better crystallinity and finer particle size. Regular columnar ZrB2 grains ranging from 1 to 2?µm were seen existing after reaction at 1500?°C for 90?min.  相似文献   

20.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号