首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, silica powders and transparent glass‐ceramic materials containing LaF3:Eu3+ nanocrystals were synthesized using the low‐temperature sol‐gel technique. Prepared samples were characterized by TG/DSC analysis as well as X‐ray diffraction and IR spectroscopy. The transformation from liquid sols toward bulk powders and xerogels was also examined and analyzed. The optical behavior of prepared Eu3+‐doped sol‐gel samples were evaluated based on photoluminescence excitation (PLE: λem = 611 nm) and emission (PL: λexc = 393 nm, λexc = 397 nm) spectra as well as luminescence decay analysis. The series of luminescence lines located within reddish‐orange spectral scope were registered and identified as the intra‐configurational 4f6‐4f6 transitions originated from Eu3+ optically active ions (5D0 → 7FJ, J = 0‐4). Moreover, the R/O‐ratio was also calculated to estimate the symmetry in local framework around Eu3+ ions. The luminescence spectra and double‐exponential character of decay curves recorded for fabricated nanocrystalline sol‐gel samples (τ1(5D0) = 2.07 ms, τ2(5D0) = 8.07 ms and τ1(5D0) = 0.79 ms, τ2(5D0) = 9.76 ms for powders and glass‐ceramics, respectively) indicated the successful migration of optically active Eu3+ ions from amorphous silica framework to low phonon energy LaF3 nanocrystal phase.  相似文献   

2.
Yttrium stabilized zirconia (YSZ) ceramics doped with Eu3+ ions have been successfully fabricated by Spark Plasma Sintering (SPS) technique. The influence of the europium concentration and post-annealing process on the structural, optical, and luminescent properties of the ceramics has been studied. It is shown that an increase in the europium concentration from 0.1 to 3 wt% does not lead to significant changes in the transmission spectra. However, annealing in air atmosphere at temperature from 700 °C to 1300 °C significantly affects the transmission spectrum, as a possible consequenceofthe formation of oxygen vacancy defects. The analysis of the photoexcitation and photoluminescence spectra showed that the main excitation bands are determined by direct excitation of the 7F0 ground state of Eu3+ions to the higher 4f energy levels with further radiation transitionsfrom these states. Moreover, the europium ion in the obtained ceramics occupy low-symmetry sites without inversion center.The luminescence decay kineticsare described by a doubleexponential function with decay time τ1 ~ 20 ns and τ2~ 90 ns for intrinsic emission centers and millisecond (τ ~ 1.4 ms) for Eu3+emission, for all investigated ceramics. The luminescence spectra in nanosecond time region are characteristic for yttrium-stabilized zirconia and are caused by oxygen vacancies in the presence of heavy cations (Y3+ and Eu3+).  相似文献   

3.
MgAl2O4 ceramics doped with rare earth ions (Eu2+ and Ce3+ ions) were fabricated by spark plasma sintering technique. A complex characterization of the crystalline and defect structure of the ceramic by XRD was carried out. Absorption, excitation, photo- and cathodoluminescence spectra were studied. The photoluminescence spectrum shifts to the blue region with a maximum at λem =?475?nm for the MAS:0.1Ce ceramics. The nature of this luminescence can be caused by the radiative transitions in the cerium ion 5d–4f. The emission spectrum of MAS:0.1Eu has a “green” band emission in range of 400–700?nm centered around 500?nm, which can be ascribed to the allowed 4f65d1→4f7 (5d–4f) transition of Eu2+. In the millisecond time range, simultaneously with the emission of the complex host centers, the impurity luminescence bands of the chromium ion are recorded. It was shown that cathodoluminescence spectra in nanosecond time range can be decomposed into several emission bands at 2.72, 3.01, 3.37, 3.63–3.82?eV caused by F-type centers. It was demonstrated that the Eu2+ and Ce3+ ions lead to change the intensity ratio of the luminescence bands. The luminescence decay kinetics of synthesized spinel ceramics in nano- and millisecond time range were investigated in detail.  相似文献   

4.
《Ceramics International》2017,43(11):8424-8432
Nanocrystalline β-PbF2 phase singly-doped with Eu3+ and Tb3+ ions have been successfully synthesized using sol-gel technique and subsequent heat-treatment of xerogels at 350 °C. Thermal behavior and structural properties of obtained materials were studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC) as well as FT-IR and Raman techniques. XRD results confirmed formation of β-PbF2 nanocrystals embedded in silica amorphous hosts after annealing at 350 °C. Moreover, the photoluminescence properties have been investigated based on excitation and emission spectra as well as decay analysis from the 5D0 (Eu3+) and the 5D4 (Tb3+) excited states. The sharp intraconfigurational 4f6−4f6 and 4f8−4f8 emission transitions assigned as the 5D07FJ (J=0–4) of Eu3+ and the 5D47FJ (J=6-3) of Tb3+ bands, respectively, were registered. The most prominent bands in studied xerogels and glass-ceramic materials are related to the following electronic transitions: 5D07F1 (orange) and 5D07F2 (red) (Eu3+) as well as 5D47F5 (green) and 5D47F6 (blue) (Tb3+). Thus, the R/O (Eu3+) and G/B (Tb3+) luminescence intensity ratios were calculated and analyzed. Luminescence decay kinetic clearly indicated a presence of two different surroundings around Eu3+ and Tb3+ dopants in β-PbF2-based glass-ceramic samples. In such singly-doped with Eu3+ and Tb3+ materials, the longer luminescence lifetimes (Eu3+: τ1(5D0)=0.90 ms, τ2(5D0)=5.15 ms; Tb3+: τ1(5D4)=0.48 ms, τ2(5D4)=4.01 ms) of an appropriate excited states were achieved in comparison to xerogel hosts (Eu3+: τ(5D0)=0.38 ms; Tb3+: τ(5D4)=0.49 ms). The obtained results indicate the incorporation of Eu3+ and Tb3+ ions into nanocrystalline phase during ceramization process.  相似文献   

5.
Monolithic luminescent glass-ceramic (GC) embedded with fluoride-based nanocrystals (NCs) has drawn much attention as it is stable and possesses long fluorescent lifetime, while only small partial of optically active ions could enter the fluoride NCs prepared by conventional crystallization process. In this work, YF3:Eu3+ embedded GCs have been controllably synthesized by Spark Plasma Sintering at a relatively low sintering temperature (960°C) within 10 minutes. The GC samples show typical sharp reddish-orange emissions peaking at λ = 590 nm and 620 nm, which can be ascribed to the 5D0 → 7Fj transitions of Eu3+ located in the tetrahedral coordination sites of the YF3 NCs. Significantly, a small R/O ratio (photoluminescence intensity ratio of 5D0 → 7F2/5D0 → 7F1) suggests that majority of Eu3+ ions are well preserved in YF3 NCs, which is confirmed by the EDS and TEM results that highly crystallized YF3:Eu3+ NCs are homogeneously dispersed into the silica glass matrix without interfacial reaction. Hence, the lifetime of GC sample is prolonged to 6.8 ms These results demonstrate that Eu3+ could be well protected and resided in YF3 low phonon crystal by this method to fabricate GC composites with high optical performance.  相似文献   

6.
Transparent Eu3+-doped (0.05–0.15 at. %) alumina ceramics with fine-grained microstructure were prepared and studied in terms of optical properties and photoluminescence (PL). The light transmission through ceramics up to dopant concentrations 0.125 at. % is dominated by birefringence scattering at grain boundaries. As confirmed by HRTEM/EDS element mapping, high photoluminescence intensity was achieved as the result of the dopant segregation at grain boundaries. The PL emission spectra of Al2O3:Eu3+ ceramics exhibited red light emissions with the highest intensity (394 nm excitation) for material containing 0.125 at. % of Eu3+. The luminescence decay was single-exponential with a lifetime ~1.5 ms. The post-sintering reduction of Eu3+→Eu2+ under an H2 atmosphere (at 1300 °C) was difficult. Two simultaneously coexisting Eu2+ emitting PL centers were identified, one emitting blue light with average decay constant of 150 ns, and the other green light (more intense) with average decay constant of 1.3 μs.  相似文献   

7.
Eu3+‐doped transparent phosphate precursor glasses and glass‐ceramics containing TbPO4 nanocrystals were successfully fabricated by a conventional high‐temperature melt‐quenching technique for the first time. The formation of TbPO4 nanocrystals was identified through X‐ray diffraction, transmission electron microscopy, high‐resolution transmission electron microscopy, selected‐area electron diffraction, and photoluminescence emission spectra. The obvious Stark splitting of 5D07FJ (J = 1, 2, 4) transitions of Eu3+and the increase of internal quantum efficiency indicate the incorporation of Eu3+ into TbPO4 nanocrystals. Energy transfer from Tb3+ ions to Eu3+ ions was investigated using excitation and emission spectra at room temperature. The glass‐ceramics obtained have more efficient Tb3+ to Eu3+ energy transfer than the glass, and so serve as good hosts for luminescent materials.  相似文献   

8.
In this paper, Ba3P4O13:Eu2+ phosphor was synthesized by a solid-state reaction. The photoluminescence (PL) emission spectrum and luminescence decay kinetics confirm that the doped Eu2+ ions can occupy two different Ba2+ sites. The PL excitation spectrum shows a broad band matching well with the emission of near-UV chip. Ba3P4O13:Eu2+ is a promising phosphor for near-UV chip excited white LEDs. The doped Eu3+ ions can also be reduced to Eu2+ ions in air atmosphere at high temperature. Charge compensation mechanism is applied to explain this kind of abnormal reduction.  相似文献   

9.
Europium doped calcium orthosilicate (Ca2SiO4) phosphors have been synthesized by the conventional high temperature solid-state reaction method in various concentrations from agricultural waste (egg shell as a CaO and rice husk as a SiO2). These phosphors structure from X-ray diffraction and morphology from scanning electron microscopy have been examined. Concentration dependent Eu3+ ions luminescent properties in Ca2SiO4 phosphors have been studied from the excitation, emission and decay curves analysis. The 5D07FJ transitions observed in luminescence spectrum allows to determine the site symmetry of the Eu3+ ion. A charge transfer band (CTB) at around 260?nm which is due to the Eu–O interaction in the host along with the 4f – 4f excitation bands due to Eu3+ ions in UV and blue regions are observed. The color co-ordinates determined from emission spectra varies with concentrations of Eu3+ ions and are found to fall in the red region. The decay curves show single exponential behavior for all concentrations of Eu3+ ions (0.01–0.4?mol%) and the lifetimes varied from 2.67 to 2.78?ms. It is worth noting that the present material is found to be far better than many red phosphors synthesized by using agricultural waste as raw materials.  相似文献   

10.
Transparent glass‐ceramics containing Ce3+: Y3Al5O12 phosphors and Eu3+ ions were successfully fabricated by a low‐temperature co‐sintering technique to explore their potential application in white light‐emitting diodes (WLEDs). Microstructure of the sample was studied using a scanning electron microscope equipped with an energy dispersive X‐ray spectroscopy. The impact of co‐sintering temperature, Ce3+: Y3Al5O12 crystal content and Eu3+ doping content on optical properties of glass‐ceramics were systematically studied by emission, excitation spectra, and decay curves. Notably, the spatial separation of these two different activators in the present glass‐ceramics, where Ce3+ ions located in YAG crystalline phase while the Eu3+ ones stayed in glass matrix, is advantageous to the realization of both intense yellow emission assigned to Ce3+: 5d→4f transition and red luminescence originating from Eu3+: 4f→4f transitions. As a result, the quantum yield of the glass‐ceramic reached as high as 93%, and the constructed WLEDs exhibited an optimal luminous efficacy of 122 lm/W, correlated color temperature of 6532 K and color rendering index of 75.  相似文献   

11.
The phosphors Y6MoO12:Eu3+ have been synthesized via citrate complexation method at different calcination temperatures. The evolutions of the crystal structure and the photoluminescence (PL) properties were characterized by means of powder X‐ray diffraction (XRD), Raman and PL spectra, respectively. It was revealed that a red emission could be obtained via three excitation channels, namely ff transition of Eu3+ ions, charge‐transfer transition from O2 to Eu3+, and interband transition (IBT) of MoO6 groups. The PL spectra and their temporal decay character of Eu3+ ions depended on both crystal structure and excitation channel. The emission reduced with the crystallite size when Eu3+ ions were excited directly, but the emission evolved in a different model with the host lattices were excited. The effect of grain boundary and other lattice defect on the energy transfer and dissipation within the phosphors were discussed.  相似文献   

12.
Tb3+‐, Eu3+‐activated, and Eu3+/Tb3+‐coactivated oxyfluoride borogermanate scintillating glasses with the density of about 6.50 g/cm3 were successfully synthesized by a melt‐quenching method. The structure and optical properties including transmittance, photoluminescence (excitation and emission spectra), photoluminescence decay, and X‐ray excited luminescence behaviors were studied in detail. Our results reveal that the energy‐transfer efficiency from Tb3+ to Eu3+ ions increases with an increase in Eu3+ concentration. The energy‐transfer mechanism is also discussed by Dexter's and Reisfeld's semiexperimental methods.  相似文献   

13.
Eu3+‐doped red‐emitting ceramics of Eu3+‐doped La3Mg2NbO9 were prepared via typical solid state. X‐ray diffraction and scanning electron microscope were utilized to characterize the ceramics. The photoluminescence excitation and emission spectra, the fluorescence decay curves, and color coordinates were investigated. The concentration quenching of the samples were discussed as well. The microstructures of the ceramics were discussed according to the spectral properties of probe ions of Eu3+, for example, substitution sites for Eu3+, inhomogeneous broadening and splitting of the emission bands, nonexponential decay, 5D07F0 emission transition, distorted symmetry sites, etc. The crystal structure of La3Mg2NbO9 is heavily distorted due to the mixed occupation of Mg and Nb on B sites. Eu3+ ions only substitute La3+ sites and Eu3+ ions (or rare‐earth ions) are arranged in the heavily disordered environments over the whole structure in La3Mg2NbO9.  相似文献   

14.
《Ceramics International》2016,42(12):13476-13484
A novel green phosphor composed of Ca4LaO(BO3)3:Tb3+ (CLBO:Tb) has been synthesized by a combustion method with urea. Its crystal structure, temperature-dependent luminescence, and quantum yield (QY) have been characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra with heating device and integrate sphere. No concentration quenching has been observed when all of La3+ ions are substituted with Tb3+ ions. Green phosphor Ca4TbO(BO3)3 (CTBO) has 200% luminescence intensity of commercially available phosphor LaPO4:Ce, Tb (LPO:Ce, Tb) under 378 nm excitation. The QY of CTBO is as high as 98%. Through a Dexter energy transfer mechanism, Eu3+ ions are efficiently sensitized by Tb3+, resulting in an emission with color tunable from green to red under ultraviolet excitation. A possible mechanism of energy transfer from Tb3+ to Eu3+ has been investigated by PL spectra and decay measurements. The energy transfer efficiency from Tb3+ to Eu3+ increases linearly with concentration of Eu3+ increasing.  相似文献   

15.
Transparent oxyfluoride glass-ceramics containing Eu: BaYF5 nano-crystals in the newly developed SiO2–K2CO3–BaF2–YF3–Sb2O3 glass system are synthesized by melt quenching method followed by optimized ceramization process. The X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy confirmed the precipitation of tetragonal BaYF5 nano-crystals in glass matrix. The coexistence of Eu2+ and Eu3+ ions in both glass and glass-ceramics are ascertained from their emission and excitation spectra. The in situ formation of divalent europium (Eu2+) along with Eu3+ during high temperature synthesis under ambient atmosphere is explained through optical basicity model. The Eu3+ emission from upper excitation states (5D3−1) and reduced asymmetry ratio (R = IED/IMD) in glass-ceramics have established the dopant ion incorporation into fluoride nano-crystalline environment. The observed luminescence properties of Eu:BaYF5 are compared with that of Eu:BaYF5 nanocrystals containing transparent glass-ceramics and their marked differences are discussed.  相似文献   

16.
Dual valence Eu‐doped transparent glass‐ceramics containing LuPO4 nanocrystals were fabricated by melt‐quenching technique in air atmosphere. Their luminescent properties were systematically investigated by excitation, emission spectra, and decay lifetime measurements. The prominent Stark splitting, low forced electric‐dipole 5D07F2 transition and long decay lifetimes of Eu3 + emission for glass‐ceramics reveal the incorporation of Eu3 + into LuPO4 nanocrystals. The enhanced Eu2 + emission and reduction mechanism of Eu3 + to Eu2 + after crystallization are discussed briefly. Our results indicate that transparent LuPO4 glass‐ceramics may find applications in photonics.  相似文献   

17.
《Ceramics International》2020,46(5):6276-6283
In this study, novel Eu3+-, Dy3+-, and Sm3+-activated Na3La(VO4)2 phosphors were synthesized using a solid state reaction method. X-ray diffraction analysis results indicated that the Na3La(VO4)2 phosphors had an orthorhombic crystal structure with the Pbc21 space group. There were two different La(1)O8 and La(2)O8 polyhedra with high asymmetry in the crystal structure. Scanning electron microscopy revealed that the product had a sheet morphology with an irregular particle size. Further, the luminescence properties, including the excitation and emission spectra, and luminescence decay curve, were investigated using a fluorescence spectrometer. The results showed that the Na3La(VO4)2 compound was an excellent host for activating the luminescence of Eu3+ (614 nm), Dy3+ (575 nm), and Sm3+ (647 nm) ions. Further, Dy3+/Eu3+ co-doped Na3La(VO4)2 phosphors were exploited, and the energy transfer from Dy3+ to Eu3+ was demonstrated in detail by the photoluminescence excitation, photoluminescence spectra, and luminescent decay curves. The results showed that the energy transfer efficiency from Dy3+ to Eu3+ was highly efficient, and the energy transfer mechanism was dipole–dipole interactions. Finally, tunable emissions from the yellow region of CIE (0.3925, 0.4243) to the red region of CIE (0.6345, 0.3354) could be realized by rationally controlling the Dy3+/Eu3+ concentration ratio. These phosphors may be promising materials for the development of solid-state lighting and display systems.  相似文献   

18.
Tm3+ doped zinc silicate glass-ceramics composed of SiO2-Al2O3-ZnO-K2O-Tm2O3 embedded with ZnO nanocrystals were successfully fabricated by melt-quenching method with subsequent heat treatment. Tm3+ ions and ZnO nanocrystals were introduced as blue and yellow luminescence centers, respectively. The effects of heat treatment, excitation wavelength and Tm3+ doping concentration on the photoluminescence behaviors of these glass-ceramics were studied. Short-time (5 minutes) heat treatment was considered as the optimal heat treatment time, which facilitates simultaneously emitting narrow blue peak located at 453 nm and a broad yellow band centered at 580 nm. Blue and yellow emissions could be attributed to the 1D2 → 3F4 transition of Tm3+ and Zni/Oi-related defect emission of ZnO nanocrystals, respectively. The combination of these two emissions allows the realization of white light emitting in the glass-ceramic samples. Furthermore, tunable luminescent color and chromaticity coordinates, including yellow, white and blue, can be realized by varying the pumping wavelengths as well as the content of Tm3+ dopant in the glass matrix. Nearly perfect white light emission with Commission Internationale de l'Eclairage coordinate (x = 0.33, y = 0.32) was achieved for the 0.05 mol% Tm3+ doped glass-ceramic embedding ZnO nanocrystals by heat treatment at 750°C for 5 minutes under the excitation of 360 nm. These luminescent glass-ceramics doped with Tm3+ ion and ZnO nanocrystals could be a promising candidate for white light emitting devices under near-ultraviolet excitation.  相似文献   

19.
Eu3+‐doped cesium barium borate glass with the composition of Cs2O·2BaO·3B2O3 was prepared by the conventional melt quenching method. The glass‐ceramic sample was obtained from the re‐crystallization of the as‐made glass to change the amorphous glass into a crystalline host. This reduces the Eu3+ in glass to Eu2+ ions resulting in a yellow‐emitting phosphor of Eu2+‐activated CsBaB3O6. The samples were investigated by the XRD patterns and SEM micrograph, the optical absorption, the photoluminescence spectra, and decay curves. The as‐made glass has only Eu3+ centers. Under the excitation of blue or near‐UV light, Eu2+‐doped CsBaB3O6 presents yellow‐emitting color from the allowed inter‐configurational 4f–5d transition in the Eu2+ ions. The maximum absolute luminescence quantum efficiencies of Eu2+‐doped CsBaB3O6 phosphor was measured to be 47% excited at 430 nm light at 300 K. By taking into account the efficient excitation in blue wavelength region, this new phosphor could be a potential yellow‐emitting phosphor for an application in white light‐emitting diodes fabricated with blue chips.  相似文献   

20.
Eu-based vanadate Ca9Eu(VO4)7 phosphor was synthesized by the solid state reaction method and was characterized by X-ray powder diffraction (XRD). The photoluminescence excitation and emission spectra, fluorescence decay curves and the dependence of luminescence intensity on temperature were investigated. The phosphor can be efficiently excited by near UV light to realize an intense red luminescence (614 nm) corresponding to the electric dipole transition 5D07F2 of Eu3+ ions. The crystallographic site-occupations of the Eu3+ ions in Ca9Eu(VO4)7 were investigated by the site-selective excitation and emission spectra, and the fluorescence decay curves in the 5D07F0 region using a pulsed, tunable, narrowband dye laser. The red luminescence together with the thermal stability was discussed on the base of the Eu3+ site-distribution in Ca9Eu(VO4)7 host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号