首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

2.
《Ceramics International》2017,43(15):12280-12286
SiC ceramics, for the first time, were toughened with nano scale carbon nanotubes (CNTs) buckypapers and micro scale carbon fibers within this work. The CNTs buckypapers were alternately laminated with carbon fiber fabrics (Cfb) to a preform by needle punched in Z-direction. Afterwards, the buckypaper-Cfb/SiC composites were obtained by infiltrating of SiC into the as-laminated preform via chemical vapor infiltration (CVI). Some effects of different lamination thickness and CVI times on the mechanical properties of the composites were investigated. Results showed that the maximum flexural strength and work of fracture of the buckypaper-Cfb/SiC composites reached 262.4 MPa and 4.15 kJ m−2, respectively, when the thickness reached about 3.50 mm. Compared to Cfb/SiC composites without buckypapers, the strength and work of fracture of the buckypaper-Cfb/SiC composites increased by 19.8% and 111.7%, respectively. Densified composites can be obtained after CVI for 8 times. A main factor affecting the mechanical properties of buckypaper-Cfb/SiC composites is the degree of densification. Introducing nano scale CNTs and micro scale carbon fibers reaches a multiscale co-toughening effect. Meanwhile, a sandwich structure ceramic matrix composite with high-CNT concentration was obtained in this work.  相似文献   

3.
In order to improve the thermal conductivity and full-fill the gaps between the fiber bundles for three-dimensional four-directional (3D4d) braided SiCf/SiC composites, 500?nm submicron-sized β-SiC particles were introduced into the 3D4d preform by an electrophoretic deposition (EPD) method. ζ-potential of the KD-Ⅱ SiC fibers and the aqueous suspension of the β-SiC particles were analyzed, as well as the efficiency of the deposition. After densified via PIP process, microstructure, three-point bending strength and thermal conductivity of the composite were investigated. The results showed that, SiC particles filled the gaps between the SiC fiber bundles efficiently, and thermal conductivity of the composites fabricated through PIP process assisted by EPD was 2.3 times that of the composites fabricated via PIP only. The bending strength of the EPD-composites was 647.08?±?69.53?MPa, which decreased to 2/3 of that of the composites manufactured only by PIP, owing to the reduction of fiber volume fraction and the damages to the interface coatings and fibers under the action of the electric field.  相似文献   

4.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

5.
To improve the efficiency of the polymer impregnation and pyrolysis (PIP) process and the mechanical properties for SiC/SiC composites, 3-dimensional (3D) SiC/SiC were fabricated by a PIP process with a new precursor polymer and the thermal molding method. Liquid polyvinylcarbosilane (LPVCS) with active Si–H and –CHåCH2 groups was adopted as the SiC matrix precursor. The SiC/SiC composites with superior mechanical properties were efficiently fabricated. The fiber volume of the SiC/SiC was 50.4%. The bulk density and porosity of the SiC/SiC composites were 2.16 g cm−3 and 15.4% respectively. The flexural strength and fracture toughness of the SiC/SiC composites were 637.5 MPa and 29.8 MPa m1/2 respectively. The influences of LPVCS and molding pressure on the performances of the SiC/SiC composites were discussed in-depth.  相似文献   

6.
Precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) were used to fabricate SiC/SiC composites on a four-step 3D SiC fibre preform deposited with a pyrolytic carbon interface. The effects of fabrication processes on the microstructure and mechanical properties of the SiC/SiC composites were studied. Results showed the presence of irregular cracks in the matrix of the SiC/SiC composites prepared through PIP, and the crystal structure was amorphous. The room temperature flexural strength and modulus were 873.62 MPa and 98.16 GPa, respectively. The matrix of the SiC/SiC composites prepared through CVI was tightly bonded without cracks, the crystal structure had high crystallinity, and the room temperature bending strength and modulus were 790.79 MPa and 150.32 GPa, respectively. After heat treatment at 1300 °C for 50 h, the flexural strength and modulus retention rate of the SiC/SiC composites prepared through PIP were 50.01% and 61.87%, and those of the composites prepared through CVI were 99.24% and 96.18%, respectively. The mechanism of the evolution of the mechanical properties after heat treatment was examined, and the analysis revealed that it was caused by the different fabrication processes of the SiC matrix. After heat treatment, the SiC crystallites prepared through PIP greatly increased, and the SiOxCy in the matrix decomposed to produce volatile gases SiO and/or CO, ultimately leading to an increase in the number of cracks and porosity in the material and a decrease in the material load-bearing capacity. However, the size of the SiC crystallites prepared through CVI hardly changed, the SiC matrix was tightly bonded without cracks, and the load-bearing capacity only slightly changed.  相似文献   

7.
Unidirectional SiCf/SiC composites (UD SiCf/SiC composites) with excellent mechanical properties were successfully fabricated by a modified PIP method which involved the preparation of film-like matrix containing carbon layer with a low concentration PCS solution followed by the rapid densification of composites with a high concentration PCS solution. Carbon layers were in-situ formed and alternating with SiC layers in the as-received matrix. The unique microstructure endows the composites with appropriate interfacial bonding state, good load transfer ability of interphase and matrix and load bearing ability of fiber, and great crack deflection capacity, which ensures the synergy of high strength and toughness of composites. It is also found that the fiber volume fraction in the preform makes a non-negligible effect on the distribution of interphase and matrix, of which the reasonable adjustment can be utilized to optimize the mechanical properties of composites. Compared with the composites only using high concentration PCS solution, the UD SiCf/SiC composites prepared by the modified PIP method exhibit superior mechanical properties. Ultrahigh flexural strength of 1318.5 ± 158.3 MPa and fracture toughness of 47.6 ± 5.6 MPa·m1/2 were achieved at the fiber volume fraction of 30%.  相似文献   

8.
The oxidation behavior of SiC/BN/SiC ceramic matrix composites (CMCs) was evaluated from 400° to 800 °C in 100% O2 and 50% H2O/50% O2 gas mixtures. Thermogravimetric analysis (TGA) was utilized to measure weight change during controlled environment exposures at elevated temperatures for 1 and 50 hours. Oxidized CMCs and their oxides were studied post-exposure with scanning electron microscopy and energy dispersive spectroscopy. The oxidation onset and composition transition temperatures were evaluated. Key observations include oxide composition, oxide wetting, oxygen solubility in Hi-Nicalon SiC fibers and BN fiber coating oxidation and volatility behavior as a function of temperature. Degradation in wet environments at 600 °C was most extensive due to the formation of a non-wetting, non-protective surface oxide, allowing oxidant access to the BN fiber coatings followed by oxidation and volatilization. Implications of the CMC oxidation behavior are discussed for CMCs in service.  相似文献   

9.
Spray drying, binder jetting and chemical vapor infiltration (CVI) were used in combination for the first time to fabricate SiC whisker-reinforced SiC ceramic matrix composites (SiCW/SiC). Granulated needle-shaped SiCW was spray dried into SiCW spherical particles to increase flowability and thereby increase printability. Then, binder jetting was employed to print a novel SiCW preform with two-stage pores using the SiCW spherical particles. The subsequent CVI technology produced pure, dense, and continuous SiC matrix with high modulus and strength. Consequently, SiCW/SiC with appropriate mechanical properties was obtained. Finally, the challenges of the novel method and the ways to improve the mechanical properties of SiCW/SiC are discussed.  相似文献   

10.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   

11.
Herein, a chemo-mechanical coupled constitutive and failure model is proposed to predict the tensile behavior of SiC/SiC composites under oxidizing environments. The diffusion of O2 through the oxide scale and the oxidation reaction of SiC/O2 are modeled and implemented in finite element software, through a user-defined element. Numerical validation studies and tests are conducted on a domestic SiC fiber. An orthotropic constitutive model for reinforcements, which considers modulus reduction due to oxidation damage, and a continuum damage model associated with O2 diffusion along the micro-cracks in the SiC matrix are subsequently presented. The developed framework is used to simulate the mechanical behavior and oxidation process of a single fiber SiC/SiC composite.  相似文献   

12.
《Ceramics International》2017,43(10):7618-7626
This paper reports the processing feasibility of electrophoretic deposition combined with hot pressing in the fabrication of dense tubular SiCf/SiC composites using a cylindrical mold. A simulation of pressure distribution using ANSYS software was performed by varying the angular inclinations in a cylindrical mold with an ‘out → in’ configuration so as to ensure a maximum and uniform conversion of vertical hot press force to the lateral side of a centrally-located preform through graphite powder. The simulation revealed an inhomogeneous pressure distribution along the height of the preform, which could be minimized by mold optimization to achieve a more uniform tube density. To verify this, two different preform architectures such as 0/90° woven 2-D fabric rolled in a jelly state and filament winding with two plies having an inter-ply angle of 55° were hot-pressed using a mold fabricated based on the simulation after infiltrating the matrix phase by electrophoretic deposition. The density of the tube could be increased with more uniform microstructures. Although the tube using a filament winding preform exhibited a lower flexural strength (105 MPa) and relative density (90%) than those with the preform rolled in a jelly state (221 MPa, 95%), the results revealed a high degree of fiber pull-out due to the PyC coating on the SiC fiber.  相似文献   

13.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

14.
《Ceramics International》2015,41(8):9572-9576
Carbon fiber reinforced silicon carbide (C/SiC) composites fabricated by polymer impregnation and pyrolysis (PIP) have been exposed in simulated space atomic oxygen (AO) environment for up to 15 h. The mechanical properties and chemical composition of PIP C/SiC composites have been studied. The results show that the mass loss of the composites increases at the beginning and then decreases as the exposure time lasts. The flexural properties of C/SiC composites have no obvious changes after up to 15 h exposure in AO. C/SiC composites have been oxidized slightly by AO. The amorphous carbon in the matrix has been oxidized to CO or CO2 gas and SiC has been oxidized to SiO gas and SiO2.  相似文献   

15.
《Ceramics International》2017,43(7):5832-5836
Needle-punched Cf/SiC composites were fabricated by a novel pore tuned reactive melt infiltration (RMI) process. The novel hierarchically porous carbon structure in the fiber preform with the porosity well open to liquid silicon was engineered by impregnation of phenolic resin with addition of a pore former. Neither residual bulk carbon nor residual bulk silicon is detected in the matrix of the Cf/SiC composites prepared by the pore tuned RMI, indicating that a robust matrix with homogenous SiC can be formed. The composite prepared by the pore tuned RMI exhibits a tensile strength of 159±5 MPa, which is 46% higher than that without addition of pore former.  相似文献   

16.
The chopped carbon fiber reinforced SiC (Cf/SiC) composite has been regarded as one of the excellent high-temperature structural materials for applications in aerospace and military fields. This paper presented a novel printing strategy using direct ink writing (DIW) of chopped fibers reinforced polymer-derived ceramics (PDCs) with polymer infiltration and pyrolysis (PIP) process for the fabrication of Cf/SiC composites with high strength and low shrinkage. Five types of PDCs printing inks with different Cf contents were prepared, their rheological properties and alignment of carbon fiber in the printing filament were studied. The 3D scaffold structures and bending test samples of Cf/SiC composites were fabricated with different Cf contents. The results found that the Cf/SiC composite with 30 wt% Cf content has high bending strength (~ 7.09 MPa) and negligible linear shrinkage (~ 0.48%). After the PIP process, the defects on the Cf/SiC composite structures were sufficiently filled, and the bending strength of Cf/SiC composite can reach up to about 100 MPa, which was about 30 times greater than that of the pure SiC matrix without Cf. This work demonstrated that the printed Cf/SiC composites by using this method is beneficial to the development of the precision and complex high-temperature structural members.  相似文献   

17.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

18.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

19.
Reactive melt infiltration (RMI) has been proved to be one of the most promising technologies for fabrication of C/SiC composites because of its low cost and short processing cycle. However, the poor mechanical and anti-ablation properties of the RMI-C/SiC composites severely limit their practical use due to an imperfect siliconization of carbon matrixes with thick walls and micron-sized pores. Here, we report a high-performance RMI-C/SiC composite fabricated using a carbon fiber reinforced nanoporous carbon (NC) matrix preform composed of overlapping nanoparticles and abundant nanopores. For comparison, the C/C performs with conventional pyrocarbon (PyC) or resin carbon (ReC) matrixes were also used to explore the effect of carbon matrix on the composition and property of the obtained C/SiC composites. The C/SiC derived from C/NC with a high density of 2.50 g cm?3 has dense and pure SiC matrix and intact carbon fibers due to the complete ceramization of original carbon matrix and the almost full consumption of inspersed silicon. In contrast, the counterparts based on C/PyC or C/ReC with a low density have a little SiC, much residual silicon and carbon, and many corroded fibers. As a result, the C/SiC from C/NC shows the highest flexural strength of 218.1 MPa and the lowest ablation rate of 0.168 µm s?1 in an oxyacetylene flame of ~ 2200 °C with a duration time of 500 s. This work opens up a new way for the development of high-performance ceramic matrix composites by siliconizing the C/C preforms with nanoporous carbon matrix.  相似文献   

20.
SiC fibers have been widely investigated as reinforcements for advanced ceramic matrix composites owing to their excellent high-temperature properties. However, the axial compressive strength of SiC fibers has not been thoroughly studied. In this study, the compressive behavior of two SiC fiber types containing different compositions and thermal degradation were characterized by tensile recoil measurements. Results illustrated that the SiC fiber compressive strength was 30%–50% of its tensile strength, after heat treatment at 1200℃–1800℃ for 0.5 h in argon. The fiber compressive failure mechanism was studied, and a “shear-bending-cleavage” model was proposed for the recoil compression fracture of pristine SiC fibers. The average compressive and tensile strengths of the pristine SiC-II fiber were 1.37 and 3.08 GPa, respectively. After treatment at 1800℃ for 0.5 h in argon, the SiC-II fiber compressive strength decreased to 0.42 GPa, whereas the tensile strength reduced to 1.47 GPa. The mechanical properties of the fibers degraded after high-temperature treatment. This could be attributed to SiC grain coarsening and SiCxOy phase decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号