首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
变形温度对MP159合金组织性能的影响   总被引:1,自引:0,他引:1  
分析了变形温度对MP159高温合金组织。性能的影响规律,得到了该合金合理的变形温度范围。  相似文献   

2.
By comparing the relationship of room temperature yield strength with the reduction of cold rolled MP159 alloy before and after aging at 650℃, and by means of TEM examination on the corresponding microstructures, the occurrence of fcc(α)→hcp(ε) martensitic transition in MP159 alloy during cold deformation and the variation of the platelet E phase during aging have been Studied. The results show that the platelet E phase is really formed when the cold deformation reaches a critical value, and both the amount and the width of the platelet B phase would further increase during 650℃ aging. The increases of the amount and the width of the platelet εphase result in an additional increase of yield strength. Therefore, it is concluded that the additional hardening effect of MP159 alloy after aging is not only from the precipitation of Ni3X disperse phase but also from the volume fraction increase of the platelet ε phase. Further occurrence of the martensitic transition during aging may be due to the elimination of residual compression stress within matrix induced by the fcc(α)→hcp(ε) transition during cold deformation  相似文献   

3.
为了研究ZK60镁合金的热变形行为,采用Gleebe-1500热模拟机在变形温度为423~673K、应变速率为0.001~10s-1条件下对合金进行的热压缩试验.分析合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立合金流变应力本构方程,并观察合金变形过程中的显微组织演变.结果表明:变形温度低于473K且应变速率大于0.1s-1时试样发生宏观开裂;在变形温度较高和应变速率较低时,合金真应力-真应变曲线具有动态再结晶特征.随变形温度升高和应变速率的降低流变应力减小,热压缩后的组织中再结晶现象越明显;应变速率越高,再结晶晶粒越细小.  相似文献   

4.
BT20合金高温变形行为的研究   总被引:25,自引:0,他引:25  
为实现BT20合金锻造的数值模拟和合理制定其热成形工艺参数,利用Thermecmastor-Z型热模拟试验机对该材料在热成形条件下的变形抗力进行了研究,考察了变形温度、应变速率及变形程度与变形抗力之间的关系,并利用冶金学方法对其进行了分析.结果表明,应变速率和变形温度的变化强烈影响着合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.通过真实σ-ε曲线,回归出可综合反映锻造热力参数对材料成形性能影响的本构方程.  相似文献   

5.
主要研究具有层片状α相组织的TB8钛合金在α+β双相区的热变形行为。结果表明,在应变速率为1s-1时,变形温度为650℃的流变曲线展现出连续的流变软化,当温度高于650℃时,流变曲线呈现出不连续屈服现象。不连续屈服现象随变形温度的增加和应变速率的降低而消失。当应变速率为0.001s-1时,750℃和800℃的流变曲线呈现出典型的动态再结晶特征。峰值应力σp,温度T和应变速率ε·三者之间的关系已通过Arrhenius-type本构方程进行表征,建立了材料常数α,A,n和Q值与真应变之间的关系模型,并分析了应变对α,A,n和Q值的影响。α值随真应变的增加而增加,而A,n和Q的值随真应变的增加而逐渐降低。实验应力值和预测应力值之间的相关系数和平均相对误差参数分别为0.945和9.08%。这表明本工作建立的应变补偿的热变形本构方程能够很好地预测具有层片状α相组织的TB8钛合金在α+β双相区热变形过程中的流变应力。  相似文献   

6.
The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s−1. Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.  相似文献   

7.
Abstract

Isothermal compression tests on a commercial TC6 titanium alloy have been conducted at deformation temperatures of about 800 – 1040°C, strain rates of 0.001 – 50 s-1 and height reductions of 30 – 50%. The microstructural evolution is represented through the measured grain size of the prior α-phase. Meanwhile, a new constitutive equation, which includes the grain size, is established for high temperature deformation behaviour. The procedure required to formulate a constitutive equation from the experimental results is presented. The constitutive equation to model the behaviour of the TC6 titanium alloy during high temperature deformation is validated and its formulation is presented. The results show that the present equation is satisfactory for describing the behaviour of the TC6 titanium alloy during high temperature deformation. The maximum difference between the calculated and the experimental results is less than 15%.  相似文献   

8.
The deformation behavior of Al–W alloy was researched with isothermal compression tests at various deformation temperatures and strain rates to evaluate the deformation activation energy and to develop the constitutive relationship equation, which is in pursuit of revealing the dependence of the flow stress on the strain, strain rate and deformation temperature. The compression tests were conducted in the temperature range between 420 and 570 °C and at strain rates between 0.001 and 5.0 s−1. With the help of determination of related material constants (such as A, β and α) and activation energy Q (451.15 kJ mol−1), the Arrhenius-type constitutive relationship equation of Al–W alloy is developed. It was found that the correlation coefficient R and the AARE is 0.997% and 4.08%, respectively. The results show that the Arrhenius-type model, which considers the combined influence of strain rate and deformation temperature, is able to provide the accurate prediction of high temperature flow stress for the researched alloy.  相似文献   

9.
TC21 钛合金高温变形本构方程研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的研究变形温度、应变速率等热力参数对TC21钛合金流动应力的影响规律,并构建出TC21钛合金本构方程。方法在热模拟试验机上对TC21钛合金进行了等温恒应变速率压缩实验,分析其真应力-真应变曲线。结果获得了该合金在变形温度范围为760~920℃、应变速率范围为0.001~10 s-1的流动应力数据,采用多元线性回归法建立了该合金的本构方程。结论误差分析表明,该本构方程具有较高精度,可为TC21钛合金锻造过程中的数值模拟和锻造热力参数的合理制定提供理论依据。  相似文献   

10.
Constitutive relationship equation reflects the highly non-linear relationship of flow stress as function of strain, strain rate and temperature. It is a necessary mathematical model that describes basic information of materials deformation and finite element simulation. In this paper, based on the experimental data obtained from Gleeble-1500 Thermal Simulator, the constitutive relationship model for Ti40 alloy has been developed using back propagation (BP) neural network. The predicted flow stress values were compared with the experimental values. It was found that the absolute relative error between predicted and experimental data is less than 8.0%, which shows that predicted flow stress by artificial neural network (ANN) model is in good agreement with experimental results. Moreover, the ANN model could describe the whole deforming process better, indicating that the present model can provide a convenient and effective way to establish the constitutive relationship for Ti40 alloy.  相似文献   

11.
A constitutive equation of plastic deformation under tension-tension, strain controlled cyclic loading condition was derived from the transition state theory of rate processes. It was considered that the rate of plastic flow during the (tension-tension) cyclic deformation is controlled by a system of two consecutive energy barriers and that the material structural characteristics remain constant during cyclic deformation. The study revealed that within the stress, time, and temperature range, where the backward activations over the energy barriers are negligibly small, tension-tension, strain controlled cyclic deformation is essentially a stress relaxation process. The theory described well the cyclic deformation behavior of a near eutectoid ZnAl alloy. The constitutive parameters determined from the analysis of stress relaxation and tension-tension, strain controlled cyclic loading experimental results were identical. Consequently, it was recommended that stress relaxation can be used to determine the material structural characteristics which can then be used to predict the tension-tension, strain controlled cyclic deformation behavior of the alloy, using the constitutive equation derived in this report.  相似文献   

12.
Cu-2.32Ni-0.57Si-0.05P合金热压缩变形研究   总被引:1,自引:0,他引:1  
在Gleeble-1500D热模拟试验机上,对Cu-2.32Ni-0.57Si-0.05P合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下,进行恒温压缩模拟实验研究.分析了实验合金在高温变形时的流变应力、应变速率及变形温度之间的关系,研究了变形温度对合金显微组织的影响.计算了合金高温热压缩变形时的应力指数n、应力参数α、结构因子A以及平均热变形激活能Q.结果表明:合金的流变应力随变形温度升高而降低,随应变速率提高而增大.热变形过程的流变应力可用双曲正弦本构关系来描述.当变形温度高于750℃时,合金流变曲线呈现出明显的动态再结晶特征,合金显微组织为完全的动态再结晶组织.合金的热加工宜在应变速率为0.1~1s-1、温度为700~800℃范围内进行.  相似文献   

13.
使用Gleeble-1500D型热模拟试验机,对挤压态Mg-9Li-3A1-2.5Sr合金进行热力模拟实验(变形温度为200-350℃,应变速率为0.001-1 s-1),分析了材料的流变应力与变形温度和应变速率的关系,建立了该合金热变形过程中的本构方程,计算了该合金的热加工图,并结合显微组织观察对加工图进行了分析.结果表明:材料的流变应力随着应变速率的增加而增加,随着温度的升高而下降;用双曲正弦函数关系式能很好地描述材料在热变形过程中的稳态流变应力;对热加工图的分析结果表明,在实验参数范围内材料的最佳理论热加工区为260-300℃和0.01-1 s-1.材料的超塑性加工区为340-350℃和0.003-0.01 s-1。  相似文献   

14.
胡勇  陈威  李晓诚  彭和思  丁雨田 《材料导报》2017,31(16):144-149
通过Gleeble-1500热模拟机在500~600℃、应变速率0.01~10s~(-1)条件下的近等温热模拟压缩试验,建立合金本构方程和热加工图。结果表明:HMn62-3-3合金在热变形过程中发生动态再结晶行为,其峰值应力随变形温度的升高或应变速率的降低而降低;采用Arrhenius方程能够较好地拟合HMn62-3-3合金的流变行为,其热变形激活能为201.525kJ·mol~(-1);根据DMM模型,计算并建立了HMn62-3-3材料的热加工图,由此确定热变形过程中的最佳工艺参数为变形温度610~640℃,应变速率为2~10s~(-1)。  相似文献   

15.
利用Gleeble-3500热模拟试验机进行等温恒应变热压缩实验,以实验获得的数据为基础,研究Ti-22Al-24Nb-0.5Y合金流变行为,通过正交实验对影响合金的流变应力因素进行分析,并建立基于BP神经网络的合金高温本构关系模型。结果表明:影响合金流变应力的主要因素依次为应变速率、变形温度和应变量;Ti-22Al-24Nb-0.5Y合金在热变形时的流变应力对应变速率和变形温度都较为敏感。当变形温度较低,应变速率较高时,合金变形呈流变软化特征,当变形温度较高,应变速率较低时,合金变形趋向于稳态流动;利用BP神经网络建立的合金高温本构关系模型,具有较高的精度,其相关性系数达到0.9949,平均相对误差在3.23%,预测值偏差在10%以内的数据点达98.79%,该预测模型可作为Ti2AlNb基合金塑性成形过程有限元模拟的本构关系。  相似文献   

16.
The electron beam welding of superalloy FGH4096 and GH4133B was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam weldments. Isothermal compression tests were carried out on electron beam weldments FGH4096-GH4133B alloy at the temperatures of 1020–11140 °C (the nominal γ′-transus temperature is about 1080 °C) and the strain rates of 0.001–1.0 s−1 with the height reduction of 50%. True stress–true strain curves are sensitive to the deformation temperature and strain rate, and the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The true stress–true strain curves can indicate the intrinsic relationship between the flow stress and the thermal-dynamic behavior. The apparent activation energy of deformation at the strain of 0.6 was calculated to be 550 kJ/mol, and the apparent activation energy has a great effect on the microstructure. The constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling the hot deformation process of FGH4096-GH4133B electron beam weldments. The constitutive equation at the strain of 0.6 was established using the hyperbolic law. The relationship between the strain and the values of parameters was studied, and the cubic functions were built. The constitutive equation during the whole process can be obtained based on the parameters under different strains. Comparing the experimental flow stress and the calculated flow stress, the constitutive equation obtained in this paper can be very good to predict the flow stress under the deformation temperature range of 1020–1140 °C and the strain rate range of 1.0–0.001 s−1.  相似文献   

17.
基于摩擦修正的 TA15 钛合金热变形行为及加工图   总被引:1,自引:1,他引:0       下载免费PDF全文
目的采用Gleeble-3500热模拟实验机,研究TA15钛合金在变形温度为900~1050℃、应变速率为0.01~1 s-1条件下的热压缩流变行为及变形组织。方法采用一种简单有效的方法修正了TA15钛合金热压缩实验中摩擦引起的误差;计算出了TA15钛合金的应力指数和热变形激活能,建立了含有Z参数的双曲正弦函数形式本构方程;基于Murty准则,建立了其加工图。结果TA15钛合金的热压缩流变行为可采用含有Z参数的双曲正弦函数形式本构方程来描述,其平均变形激活能为625.884 kJ/mol;通过分析热加工图,确定了最优热变形工艺参数为:T=950℃,ε=0.01 s-1。结论研究结果可为TA15钛合金的塑性变形数值模拟提供基础,对合理制定热加工工艺具有重要指导意义。  相似文献   

18.
The hot deformation behaviors of H62 brass are investigated by isothermal compression tests on a Gleeble 1500 thermal-mechanics simulator in the temperature range of 650-800 °C and the strain rate range of 0.01-10 s−1. Most of the stress-strain curves exhibit a single peak stress, indicating a typical dynamic recrystallization (DRX) behavior of the alloy. Further microstructural observation confirms the occurrence of DRX behavior and the β → α phase transformation of H62 brass under the deformation conditions. A new constitutive equation coupling flow stress with strain, strain rate and deformation temperature is developed on the basis of the Arrhenius-type equation, in which the Zener-Hollomon parameter is modified by considering the compensation of the strain rate. In the constitutive equation, the material constants α, n, Q and A are found to be functions of the strain. The flow stress predicted by the constitutive equation shows good agreement with the experimental stress, which validates the efficiency of the constitutive equation in describing the deformation behavior of the material.  相似文献   

19.
Simple modeling approaches based on the Hollomon equation, the Johnson–Cook equation, and the Arrhenius constitutive equation with strain-dependent material’s constants were used for modeling and prediction of flow stress for the single-peak dynamic recrystallization (DRX) flow curves of a stainless steel alloy. It was shown that the representation of a master normalized stress–normalized strain flow curve by simple constitutive analysis is successful in modeling of high temperature flow curves, in which the coupled effect of temperature and strain rate in the form of the Zener–Hollomon parameter is considered through incorporation of the peak stress and the peak strain into the formula. Moreover, the Johnson–Cook equation failed to appropriately predict the hot flow stress, which was ascribed to its inability in representation of both strain hardening and work softening stages and also to its completely uncoupled nature, i.e. dealing separately with the strain, strain rate, and temperature effects. It was also shown that the change in the microstructure of the material at a given strain for different deformation conditions during high-temperature deformation is responsible for the failure of the conventional strain compensation approach that is based on the Arrhenius equation. Subsequently, a simplified approach was proposed, in which by correct implementation of the hyperbolic sine law, significantly better consistency with the experiments were obtained. Moreover, good prediction abilities were achieved by implementation of a proposed physically-based approach for strain compensation, which accounts for the dependence of Young’s modulus and the self-diffusion coefficient on temperature and sets the theoretical values in Garofalo’s type constitutive equation based on the operating deformation mechanism. It was concluded that for flow stress modeling by the strain compensation techniques, the deformation activation energy should not be considered as a function of strain.  相似文献   

20.
TA15钛合金高温变形行为研究   总被引:1,自引:0,他引:1  
通过热模拟压缩试验,研究了TA15钛合金的高温变形行为。结果表明:应变速率较小时,变形温度对稳态应力和峰值应力的影响较小;应变速率较大时,变形温度对稳态应力和峰值应力的影响较大。变形温度较低时,应变速率对稳态应力和峰值应力的影响较大;变形温度较高时,应变速率对稳态应力和峰值应力的影响较小。同时,还建立了TA15钛合金高温变形时的流动应力本构方程,方程的计算值与实验数据吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号