首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently proposed a new model for the differentiation pathway of alphabeta TCR thymocytes, with the CD4 and CD8 coreceptors undergoing an unexpectedly complex series of expression changes. Taking into account this new insight, we reinvestigated the timing of thymic negative selection. We found that, although endogenous superantigen-driven thymic negative selection could occur at different steps during double-positive/single-positive cell transition, this event was never observed among CD4lowCD8low TCRint CD69+ thymocytes, i.e., within the first subset to be generated upon TCR-mediated activation of immature double-positive cells. We confirm a role for CD40/CD40L interaction, and the absence of involvement of CD28 costimulation, in thymic deletion in vivo. Surprisingly, we found that thymic negative selection was impaired in the absence of Fas, but not FasL, molecule expression. Finally, we show involvement in opposing directions for p59fyn and SHP-1 molecules in signaling for thymic negative selection.  相似文献   

2.
An in vitro model of CD34+CD38- stem cell (SC) differentiation in postnatal cultured thymic epithelia fragment (CTEF) cocultures is described. Sequential phenotypic analysis of the progeny of the SC-CTEF demonstrated predominantly thymocytes and minor populations of promyelocytes, monocytes and natural killer cells. Triple-positive CD3+CD4+CD8+, double-positive CD4+CD8+, and mature single-positive CD4+ and CD8+ T cells, which were TCR alpha beta+, were identified indicating normal thymocyte maturation. In kinetic studies, mature single-positive CD4+ T cells increased from 29% of total cells at one week to 54% at four weeks of coculture. These findings demonstrate that coculture of bone marrow-derived SC and allogeneic cultured thymic epithelia in vitro results in continuous normal predominantly thymocyte differentiation. The SC-CTEF cocultures were then infected with two different strains of human immunodeficiency virus. CD4+ thymocytes were markedly decreased. However, inhibition of early thymocyte maturation steps was also suggested by the presence of increased triple-negative and CD44+CD25-CD3-thymocytes and decreased CD44+CD25+ thymocytes. This model system of thymocyte maturation will be useful in the evaluation of primary T cell immunodeficiency disorders, gene therapy of SC and pharmacological augmentation of thymic function.  相似文献   

3.
4.
In this paper we report that suspensions of human fetal thymocytes contain cells that express high levels of CD34 and Thy-1. These cells were characterized with regard to location within the thymus, phenotype, and function. Confocal laser scan analysis of frozen sections of fetal thymus with anti-CD34 and Thy-1 antibodies revealed that the double-labeled cells were located in the pericortical area. In addition, it was found that the CD34+Thy-1+ cells lacked CD45 and CD50, indicating that these cells are not of hematopoietic origin; this was confirmed by the finding that these cells could be cultured as adherent cells in a medium with cholera toxin and dexamethasone, but failed to grow in mixtures of hematopoietic growth factors. Further analysis indicated that most cultured CD34+Thy-1+ cells expressed cytokeratin (CK) 14 but lacked CK 13, suggesting that these cells are immature epithelial cells. Cultured CD34+Thy-1+ cells were able to induce differentiation of CD1-CD34+CD3-CD4-CD8- thymic precursors into CD4+CD8+ cells in a reaggregate culture in the absence of exogenous cytokines. The CD4+CD8+ cells that developed in these cultures did not express CD3, indicating that CD34+Thy-1+ thymic stromal cells are not capable of completing full T cell differentiation of thymic hematopoietic progenitor cells.  相似文献   

5.
Positive selection of CD4+CD8+ T cells to the CD4+CD8- helper and CD4- CD8+ cytotoxic lineages is a multistep process that involves complex regulation of coreceptor gene expression. By analyzing expression of a reporter gene in transgenic mice, we have identified a DNA segment, located between the murine CD8beta and CD8alpha genes, that has enhancer activity restricted to CD8 lineage cells. Remarkably, this enhancer functions in thymocytes undergoing positive selection to the CD4-CD8+ phenotype but not in immature double-positive thymocytes. The enhancer also functions in gut intraepithelial lymphocytes that express CD8alpha but not CD8beta, suggesting that it is specific for CD8alpha expression. The tight correlation between activation of this enhancer and the final step in positive selection has important implications for understanding the mechanism of lineage commitment in thymocytes.  相似文献   

6.
7.
Human thymic epithelial cells express CD40, so we examined the possible role of CD40 in activation of thymocytes. We observed that both CD4+CD8- and CD4-CD8+ thymocytes proliferate after stimulation by anti-CD3 mAb in the presence of cultured thymic epithelial cells. Costimulation of CD4+ thymocytes by thymic epithelial cells is partly inhibited by an anti-CD40 mAb, but this mAb has no effect on costimulation of CD8+ thymocytes. The selective costimulatory ability of CD40 for CD4+ thymocytes was confirmed in experiments in which thymocytes were stimulated with anti-CD3 in the presence of murine P815 cells transfected with CD40 cDNA. The level of costimulation induced by P815-CD40 was comparable with that induced by P815 cells expressing CD80 (B7.1). Treatment of thymocytes with the Ca2+ ionophore ionomycin and the phorbol ester PMA or with anti-CD3 mAb resulted in up-regulation of the CD40 ligand, suggesting that this molecule is involved in CD40-mediated costimulation of human thymocytes. Costimulation of thymocytes by CD80 strongly increased anti-CD3-induced death of fetal thymocytes. In contrast, costimulation by CD40 did not increase anti-CD3-mediated apoptosis of these thymocytes. To confirm that CD40 does not affect anti-CD3-induced cell death, we established a variant of the Jurkat T leukemic cell line that constitutively expresses CD40L and analyzed the sensitivity of this cell line for activation-induced apoptosis. In contrast to CD80, CD40 failed to increase anti-CD3-mediated apoptosis in CD40L+ Jurkat cells, whereas both CD40 and CD80 strongly increased IL-2 production induced by anti-CD3. These findings suggest that costimulation by CD40 is involved in clonal expansion of CD4+ thymocytes but not in activation-induced cell death.  相似文献   

8.
9.
10.
Linomide, a quinoline-3-carboxamide, has a pleiotropic immune modulating capacity and inhibits development as well as progression of disease in animal models of autoimmunity. Linomide treatment of mice resulted in a dramatic, dose-dependent decrease of the thymic cell number shortly after the start of administration. Flow cytometric analysis revealed that the major thymocyte subset, the early immature type CD4+CD8+ thymocytes, were reduced in number by 75%, mature CD4+CD8- or CD4-CD8+ thymocytes were less sensitive to treatment. The polyclonal T cell activator Con A (Concanavalin A) was used together with IL-2 to evaluate the potential proliferative responsiveness of ex vivo thymocytes. Thymocytes from mice treated with Linomide exhibited a more vigorous proliferation than control cultures. An effect shown to not only be due to the enrichment of mature thymocytes in the cultures from Linomide treated animals, but also when purified, mature thymocytes (CD4+CD8- and CD4-CD8+) were cultured with Con A and IL-2, these cells responded with a significantly enhanced proliferation. In vivo Linomide treatment did not result in increased plasma concentrations of corticosterone and treatment of adrenalectomized mice resulted in a reduction of thymocytes which was comparable to the effect in intact mice, indicating that glucocorticoids (GC) are not major mediators of Linomide-induced thymocyte deletion. In addition to this, and supporting a glucocorticoid independent mode of action, Linomide treatment of thymocytes in vitro resulted in a significant increase in the number of apoptotic cells, specifically in the CD4+CD8+ subset, implicating apopotosis as one component in the course of thymocyte reduction. In addition to this, in vivo treatment with Linomide resulted in an identical pattern to that seen in vitro in that there was significantly increased apoptosis only in the CD4+CD8+. These data indicate that Linomide modifies thymocyte development using a glucocorticoid independent pathway and results in the increased apoptosis of the CD4+CD8+ subset.  相似文献   

11.
Extracellular ATP (ATPo) elicits a robust change in the concentration of intracellular Ca2+ ([Ca2+]i) in fura-2-loaded mouse thymocytes. Most thymocytes (60%) exposed to ATPo exhibited a biphasic rise in [Ca2+]i; [Ca2+]i rose slowly at first to a mean value of 260 nM after 163 s and then increased rapidly to a peak level of 735 nM. In many cells, a declining plateau, which lasted for more than 10 min, followed the crest in [Ca2+]i. Experiments performed in the absence of extracellular [Ca2+]o abolished the rise in thymocyte [Ca2+]i, indicating that Ca2+ influx, rather than the release of stored Ca2+, is stimulated by ATPo. ATPo- mediated Ca2+ influx was potentiated as the [Mg2+]o was reduced, confirming that ATP4- is the active agonist form. In the absence of Mg2+o, 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) proved to be the most effective agonist of those tested. The rank order of potency for adenine nucleotides was BzATP4->ATP4->MgATP2->ADP3-, suggesting purinoreceptors of the P2X7/P2Z class mediate the ATPo response. Phenotyping experiments illustrate that both immature (CD4-CD8-, CD4+CD8+) and mature (CD4+CD8-, CD4-CD8+) thymocyte populations respond to ATP. Further separation of the double-positive population by size revealed that the ATPo-mediated [Ca2+]i response was much more pronounced in large (actively dividing) than in small (terminally differentiated) CD4+CD8+ thymocytes. We conclude that thymocytes vary in sensitivity to ATPo depending upon the degree of maturation and suggest that ATPo may be involved in processes that control cellular differentiation within the thymus.  相似文献   

12.
13.
In this study we quantified CD8+ and CD4+ T cells in T lymphocytopenic BB rats as compared with control rats at given stages along the maturational pathway from immature thymocytes to mature peripheral T cells. Our results show that BB rats exhibit abnormal thymocyte subset distribution. Numbers of mature TCRhigh/CD4-8+ thymocytes, and also their TCRhigh/CD4+8+ precursors were decreased, as were levels of CD8 expression on all thymocyte subsets investigated. By analogy with mouse thymocyte development, these findings suggest a decreased efficiency for positive selection of CD8 precursors in BB rats. Furthermore, as related to the number of available mature TCRhigh single positive thymocytes, numbers of CD4+ and CD8+ T cells most recently migrated from the thymus were severely decreased in BB blood, indicating either reduced thymic output or rapid cell death after migration. Subsequently, in peripheral blood and cervical lymph nodes, a 95% decrease of CD8+ and a 50 to 80% decrease of CD4+ T cells were demonstrated upon maturation from recent thymic migrants to mature peripheral T cells, leaving the BB rat with a severely reduced T cell population, consisting of CD4+ T cells and a minute population of CD8+ T cells. The vast majority of the latter was found to have an immature peripheral phenotype. Possible consequences of our findings for the generation of autoreactive CD8+ T cells are discussed.  相似文献   

14.
Cyclosporin A (CsA) inhibits the development of mature thymocytes from their CD4+ CD8+ precursors, but may allow autoreactive cells to mature. Using 3-color flow cytometry, we have followed the progressive development of thymocytes, including potentially autoreactive cells, during CsA treatment. Numbers of CD4+ CD8+ CD3high thymocytes dropped immediately, suggesting that the generation of these mature thymocyte precursors, normally dependent upon positive selection, was inhibited by CsA. Numbers of CD4+ CD8- thymocytes also declined rapidly, but CD4 - CD8+ thymocytes were unaffected for 2 days, suggesting that the mature single-positive subsets are not symmetrically derived from a common GsA-sensitive precursor. An exceptional subset of CD8 SP thymocytes, expressing CD45RA, did not respond to CsA for about 10 days, indicating that they are distantly derived from a CsA-sensitive precursor. Apoptosis of TCR-V beta 3 + thymocytes caused by Mtv-6, quantified according to the down-regulation of CD4 and CD8 on immature thymocytes, was partially inhibited by CsA, to maximal effect within 24 hours. This did not, however, facilitate their development into mature thymocytes.  相似文献   

15.
16.
Galectin-1 is an endogenous lectin expressed by thymic and lymph node stromal cells at sites of Ag presentation and T cell death during normal development. It is known to have immunomodulatory activity in vivo and can induce apoptosis in thymocytes and activated T cells (1-3). Here we demonstrate that galectin-1 stimulation cooperates with TCR engagement to induce apoptosis, but antagonizes TCR-induced IL-2 production and proliferation in a murine T cell hybridoma and freshly isolated mouse thymocytes, respectively. Although CD4+ CD8+ double positive cells are the primary thymic subpopulation susceptible to galectin-1 treatment alone, concomitant CD3 engagement and galectin-1 stimulation broaden susceptible thymocyte subpopulations to include a subset of each CD4- CD8-, CD4+ CD8+, CD4- CD8+, and CD4+ CD8- subpopulations. Furthermore, CD3 engagement cooperates with suboptimal galectin-1 stimulation to enhance cell death in the CD4+ CD8+ subpopulation. Galectin-1 stimulation is shown to synergize with TCR engagement to dramatically and specifically enhance extracellular signal-regulated kinase-2 (ERK-2) activation, though it does not uniformly enhance TCR-induced tyrosine phosphorylation. Unlike TCR-induced IL-2 production, TCR/galectin-1-induced apoptosis is not modulated by the expression of kinase inactive or constitutively activated Lck. These data support a role for galectin-1 as a potent modulator of TCR signals and functions and indicate that individual TCR-induced signals can be independently modulated to specifically affect distinct TCR functions.  相似文献   

17.
To gain insight into the immunomodulatory effects of vitamin E (VE), immune cell population analyses were conducted using thymus and spleen from male broilers fed diets with various levels of VE supplementation (0, 17, 46, and 87 mg dl-alpha-tocopherol acetate/kg of feed). At 2 and 7 wk of age, the percentages of B cells, macrophages, and T cell subsets, delineated by the expression of CD4, CD8, and T cell receptor (TCR) isotype, in thymus and spleen were determined by flow cytometry. The percentages of thymic and splenic B cells and macrophages from 2- and 7-wk-old chickens, as well as the percentage of thymic T cells in 2-wk-old chickens, were unaffected by VE treatment. However, 7-wk-old broilers maintained on 87 mg VE/kg feed had a higher percentage of CD4+CD8- thymocytes, a higher CD4+CD8- to CD4-CD8+ thymocyte ratio, and a lower percentage of CD4+CD8+ thymocytes than chickens receiving no dietary VE supplementation. The VE-induced increase in the percentage of CD4+CD8- thymocytes was due to an increase in the TCR2+CD4+CD8- thymocyte subset, whereas the decrease in the percentage of CD4+CD8+ thymocytes involved all TCR defined T cell subsets. In the spleen, the percentage of CD4+CD8- T cells was lower in 2-wk-old chickens and higher in 7-wk-old chickens maintained on 87 mg/kg feed than in chickens receiving no dietary VE supplementation. The decrease in CD4+CD8- splenocytes at 2 wk of age was due to a decline in the percentage of TCR2+CD4+CD8- splenocytes, whereas the increase in CD4+CD8- splenocytes in 7-wk-old chicks was due to an increase in the percentages of all TCR defined CD4+CD8- T cell subsets. These data support an immunomodulatory effect of VE on CD4+CD8- T cells.  相似文献   

18.
Estrogen blocks early T cell development in the thymus   总被引:1,自引:0,他引:1  
PROBLEM: Pregnancy and estrogen are known to suppress B lymphopoiesis as well as lead to thymic involution in the mouse. Additionally, estrogen deficiency by oophorectomy reportedly causes a selective increase in the B220+ B cells in the murine bone marrow. The purpose of this study was to determine if estrogens played a regulatory role in T cell development. METHODS: The first experimental group consisted of 5-6-week-old Balb/c mice that received subcutaneous pellets of placebo, estriol, estradiol, or progesterone. The thymus glands were examined 2-4 weeks after treatment. The second group consisted of 6-week-old Balb/c mice who underwent either bilateral oophorectomy or a sham procedure. Two weeks after the surgery, extensive phenotypic characterization of the thymus and spleen cells was performed by flow cytometry using monoclonal antibodies to surface markers of T cell subsets. RESULTS: Estrogen treatment causes a dramatic reduction of thymic size and cellularity. All defined T cell subsets of CD4 and CD8 were reduced, with a disproportionate loss of CD4+CD8+ double positive cells. Examination of the triple negative (CD3-CD4-CD8-) subset revealed a striking loss of TN developmental progression of the early precursor cells. Based on the expression of CD44 (pgp-1) and CD25 (IL-2R alpha) markers, the TN thymic compartment was composed almost entirely of the earliest population (CD44+, CD25-), with the remaining maturational stages (CD44+, CD25+; CD44-, CD25+; CD44-, CD25-) depleted. In contrast, all T cell developmental stages in the thymus were found to be in normal proportions in the oophorectomized mice, with no differences in the splenic T and B cell subsets. CONCLUSIONS: The study demonstrates that estrogen but not progesterone blocks T cell development in the thymus. However, contrary to our expectation, estrogen deprivation by oophorectomy does not enhance T cell development.  相似文献   

19.
After productive rearrangement of a TCR beta chain gene, CD4-8- double negative (DN) thymocytes express TCR beta polypeptide chains on the cell surface together with pre-T alpha and the CD3 complex forming the pre-TCR. Signals transmitted through the pre-TCR select TCR beta + DN thymocytes for further maturation to the CD4+8+ double positive stage, whereas DN cells that fail to generate a productive TCR beta gene rearrangement do not continue in development. This process is termed TCR beta chain selection. Although it is likely that differences between proliferation dynamics of TCR beta + and TCR beta-cells may play a role, the exact mechanisms of TCR beta chain selection have not been elucidated. We therefore studied the proliferation dynamics of TCR beta + and TCR beta-thymocytes during fetal development, i.e., when TCR beta chain selection takes place for the first time. We analyzed in situ accumulation of TCR beta + thymocytes by confocal microscopy, and determined cell cycle and division parameters of TCR beta + and TCR beta-populations by flow cytometry. About 600 TCR beta + cells/thymic lobe are generated by independent induction events between days of gestation (dg) 13.5, and 15.5. As of dg 14.5, most TCR beta + cells have entered S/G2 phase of cell cycle, followed by seven to eight rapid cell divisions in fetal thymic organ culture, suggesting a corresponding burst of nine cell divisions within 4 d in vivo. By dg 18.5, the division rate of TCR beta + cells has slowed down to less than 1/d. About three quarters of TCR beta-cells divide at a slow rate of 1/d on dg 14.5, the proportion of nondividing cells increasing to 50% within the following four d. From dg 16.5 onwards, TCR beta-cells, but not TCR beta + cells, contain a significant proportion of apoptotic cells. The results suggest that failure to become selected results in shutdown of proliferation and eventual programmed cell death of fetal TCR beta-cells. Positive selection of fetal TCR beta + cells is achieved by an increased rate of cell divisions lasting for approximately 4 d.  相似文献   

20.
GM1 gangliosidosis is an inherited metabolic disease characterized by progressive neurological deterioration with premature death seen in children and numerous animals, including cats. We have observed that thymuses from affected cats greater than seven months of age (GM1 mutant cats) show marked thymic reduction compared to age-matched normal cats. The studies reported here were done to describe alterations in the thymus prior to (less then 90 days of age) and during the development of mild (90 to 210 days of age) to severe (greater than 210 days of age) progressive neurologic disease and to explore the pathogenesis of the thymic abnormality. Although histologic examination of the thymus from GM1 affected cats less than 210 days of age showed no significant differences from age-matched control cats, thymuses from GM1 mutant cats greater than 210 days of age were significantly reduced in size (approximately 3-fold). Histologic sections of lymph nodes, adrenal glands, and spleens from GM1 gangliosidosis-affected cats showed no significant differences. Flow cytometric analyses showed a marked decrease in the percentage of immature CD4+CD8+ thymocytes (p < 0.001) and significantly increased CD4-CD8+ cells (p < 0.01) in GM1 mutant cats greater than 210 days of age when compared to normal age matched cats. Co-labelling with CD4, CD8, and CD5 indicated an increase in the percentage of GM1 mutant cat thymocytes at this age which were CD5high, suggesting the presence of more mature cells. Cytometric analyses of subpopulations of peripheral lymphocytes indicated an increase in CD4-CD8+ cells (p < 0.05) with concurrent decreases in CD4+CD8- and CD4-CD8- cells (which were not significant). Similar analyses of thymocyte and lymphocyte subpopulations from cats < 210 days of age showed no significant differences between GM1 mutant and normal cells. GM1 mutant cats at all ages had increased surface binding of Cholera toxin B on thymocytes, indicating increased surface GM1 ganglioside expression. Increases were highly significant in GM1 mutant cats greater than 210 days of age. In situ labelling for apoptosis was increased in GM1 mutant cats between 90 to 200 days of age when thymic masses were within normal limits. In GM1 mutant cats over 200 days of age, decreased labelling was observed when thymic mass was reduced and the CD4+CD8+ subpopulation, known to be very susceptible to apoptosis, was significantly decreased. These data describe premature thymic involution in feline GM1 gangliosidosis and suggest that increased surface GM1 gangliosides alters thymocyte development in these cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号