首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and self-assembly of tetragonal phase-containing L10-Fe55Pt45 nanorods with high coercive field is described. The experimental procedure resulted in a tetragonal/cubic phase ratio close to 1:1 for the as-synthesized nanoparticles. Using different surfactant/solvent proportions in the process allowed control of particle morphology from nanospheres to nanowires. Monodisperse nanorods with lengths of 60 ± 5 nm and diameters of 2–3 nm were self-assembled in a perpendicular oriented array onto a substrate surface using hexadecylamine as organic spacer. Magnetic alignment and properties assigned, respectively, to the shape anisotropy and the tetragonal phase suggest that the self-assembled materials are a strong candidate to solve the problem of random magnetic alignment observed in FePt nanospheres leading to applications in ultrahigh magnetic recording (UHMR) systems capable of achieving a performance of the order of terabits/in2.   相似文献   

2.
A convective assembly technique at the micron scale analogous to the writing action of a “pipette pen” has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of the assembled nanoparticle arrays rely on their stacking number and surface cleanliness.   相似文献   

3.
Monodisperse CoPt3 nanocrystals (NCs) have been synthesized in oleylamine solution by an organic solvothermal method. The NCs were ellipsoidal particles with a diameter around 6.6 nm and length around 10 nm with a good single crystal structure. Using CoPt3 NCs as catalysts, large-area boron nanowires with diameters ranging from 30 to 50 nm were successfully prepared by chemical vapor deposition using a C/B/B2O3 mixture as the precursor. Structural analysis indicated that these nanowires were single crystalline with a β-rhombohedral structure. Measurement of the field emission properties of boron nanowire films showed that the boron nanowires have good field emission characteristics.   相似文献   

4.
We demonstrate that the near-infrared (NIR) absorptivity of semiconducting single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interfacial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm C60/10 nm 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies >1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.   相似文献   

5.
The procedure reported here allows for the size and shape control of CdTe nanowires by means of colloidal chemistry. Thus, ultrathin, straight, saw-tooth-like and one-sided branched nanowires with zinc blende structures could be synthesized. Their formation does not require any catalyst and is most likely due to the oriented attachment of nanoparticles formed in the beginning of the reaction. The use of oleylamine as a solvent turned out to be crucial in order to achieve CdTe nanowires. The reaction between oleic acid and oleylamine in the presence of CdO proved to be essential, not only to activate the Cd precursor but also to provide reaction conditions facilitating nanowire formation by oriented attachment.   相似文献   

6.
We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au- molecule-Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-1,4-dithiol (BDT) and 4,4′-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient.   相似文献   

7.
Controlling the densities of aligned single-walled carbon nanotube arrays (SWNTs) on ST-cut quartz is a critical step in various applications of these materials. However the growth mechanism for tuning SWNT density using the chemical vapor deposition (CVD) method is still not well understood, preventing the development of efficient ways to obtain the desired results. Here we report a general “periodic” approach that achieves ultrahigh density modulation of SWNT arrays on ST-cut quartz substrates—with densities increased by up to ∼60 times compared with conventional methods using the same catalyst densities—by varying the CH4 gas “off” time. This approach is applicable to a wide range of initial catalyst densities, substrates, catalyst types and growth conditions. We propose a general mechanism for the catalyst size-dependent nucleation of SWNTs associated with different free carbon concentrations, which explains all the observations. Moreover, the validity of the model is supported by systematic experiments involving the variation of key parameters in the “periodic” CVD approach.   相似文献   

8.
Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.   相似文献   

9.
Feng Wu  Qing Yang 《Nano Research》2011,4(9):861-869
A new protocol for the synthesis of nearly monodisperse gold nanoparticles with controllable size is described. The pathway is based on the reduction of AuCl4 by ammonium bicarbonate in the presence of sodium stearate under hydrothermal conditions. The particle sizes could be easily tuned by regulating the reaction conditions including precursor concentration, reaction temperature and growth time. A tentative explanation for the reduction and growth mechanism of uniform gold nanoparticles has been proposed. The as-prepared gold particles showed good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4, and a surface-enhanced Raman scattering (SERS) study suggested that the gold nanoparticles exhibited a high SERS effect on the probe molecule Rhodamine 6G.   相似文献   

10.
We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of ∼90% for a NW density of ∼20–25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%–95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.   相似文献   

11.
We analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.   相似文献   

12.
Of late, many synthesis processes have been studied to develop irregular nano-morphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold “nano-polyvilli” with more than 50–90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.
  相似文献   

13.
Polarized light microscopy (PLM) is used to image individual single-walled carbon nanotubes (SWNTs) suspended in air across a slit opening. The imaging contrast relies on the strong optical anisotropy typical of SWNTs. We combine PLM with a tunable light source to enable hyperspectral excitation spectroscopy and nanotube chirality assignment. Comparison with fluorescence microscopy and spectroscopy confirms the assignment made with PLM. This represents a versatile new approach to imaging SWNTs and related structures.   相似文献   

14.
An oriented array of electron transporting nanowires, grown directly on a transparent conductor constitutes an optimal architecture for efficient photovoltaic applications. In addition, semiconductor nanocrystals can work as efficient light absorbers because of their tunable optical properties. In this paper, we use an oriented array of TiO2 nanowires grown directly on a transparent conductive electrode and subsequently sensitized with colloidally grown CdSeS nanocrystal quantum dots (QDs), using an efficient bi-linker assisted methodology, to demonstrate photovoltaic cells. Upon excitation with light, exciton dissociation takes place at the nanowire-nanocrystal interface, after which, electrons are transported to the fluorine-doped tin oxide (FTO) electrode via single-crystalline TiO2 nanowire channels. We demonstrate that an ex situ ligand exchange of QDs followed by sensitization on oxygen-plasma treated TiO2 nanowires results in enhanced loading of QDs, as compared to the in situ ligand exchange approach. An array of 1 μm long TiO2 nanowire sensitized with CdSeS nanocrystals exhibits photovoltaic effects with a short-circuit current of 2–3 mA/cm2, an open circuit voltage of 0.6–0.7 V and a fill factor of 52–65%, resulting in devices with efficiencies of up to 0.6%.   相似文献   

15.
We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (∼108), low drain-induced barrier lowering (∼30 mV) and low subthreshold swing (∼80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (∼148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.   相似文献   

16.
The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS2) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS2, the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS2.   相似文献   

17.
Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities.   相似文献   

18.
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300–1150 cm2/(V·s).   相似文献   

19.
We demonstrate an elaborate method to controllably fabricate ultra-thin nanopores by layer-by-layer removal of insulating few-layer mica flakes with atomic force microscopy (AFM). The fabricated nanopores are geometrically asymmetric, like an inverted quadrangular frustum pyramid. The nanopore geometry can be engineered by finely tuning the mechanical load on the AFM tip and the scanning area. Particularly noteworthy is that the nanopores can also be fabricated in suspended few-layer mica membranes on a silicon window, and may find potential use as functional components in nanofluidic devices.   相似文献   

20.
Recent experiments have shown that entangled networks of carbon nanotubes exhibit temperature- and frequency-invariant dissipative behaviors under cyclic loading. We have performed coarse-grained molecular dynamics simulations which show that these intriguing phenomena can be attributed to the unstable attachments/detachments between individual carbon nanotubes induced by van der Waals interactions. We show that this behavior can be described by a triboelastic constitutive model. This study highlights the promise of carbon nanomaterials for energy absorption and dissipation under extreme conditions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号