首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
人工鱼群算法在SVM参数优化选择中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对支持向量机的参数优化缺乏理论支持,而SVM交叉检验法选取又较为费时的情况下,提出了基于人工鱼群算法的支持向量机参数优化选取算法,并以SVM分类预测准确率最大为优化原则,利用人工鱼群算法的较好并行性和较强的全局寻优能力,以实现最优目标并得到SVM的最优参数组合。数值实验结果表明:人工鱼群算法在SVM参数优化选取中具有更快的寻优性能,同时具有较高的分类准确率。该方法具有较好的并行性和较强的全局寻优能力。  相似文献   

2.
为了提高人体手部动作的识别性能,针对高维特征数据给模式识别带来的问题,提出了一种基于局部线性嵌入(LLE)算法和支持向量机(SVM)的模式识别方法.该方法从肱桡肌和尺侧腕屈肌上采集两路表面肌电信号(sEMG),通过对样本信号的时域分析和小波分析,提取原始信号的特征,构造特征矢量.再利用LLE算法对原始特征数据进行降维,挖掘出具有内在规律的低维特征.将降维后的特征数据输入SVM分类器进行4种动作的模式识别.实验表明:此方法可以有效、准确地对人体手部动作进行分类.  相似文献   

3.
支持向量机的参数优化一直是一个重要的研究方向。参数的好坏很大程度上决定了支持向量机的分类精度和泛化能力。针对人工鱼群算法优化支持向量机参数时,容易在后期徘徊于最优解附近、难以逼近的问题,提出了人工鱼群加速算法,使用速度参数代替人工鱼步长,从而求得最优目标并得到SVM的最优参数组合。仿真实验结果表明:该算法收敛速度快,求解数值精度高,对初值的依赖程度低,在SVM参数优化中具有更好的性能、更高的分类准确率,是一个极其有效的参数优化方法。  相似文献   

4.
5.
支持向量机在高维度、小样本情况下具有独特优势,但同时支持向量机的参数优化极大制约了其分类效果,目前参数优化缺乏系统的理论指导;针对传统DAG-SVM训练分类器较多,训练耗时长,分类效果受到结构排序的影响,提出了一种基于“1 vs R”策略的改进型算法;针对 SVM传统参数优化方式耗时大,优化精度不高,提出了改进型人工鱼群算法;最后结合1 vs R-DAG支持向量机算法与改进型人工鱼群算法,得到一种新的改进型支持向量机算法;仿真对比实验证实,对支持向量机的参数优化是有效可行的。  相似文献   

6.
基于改进人工鱼群算法的支持向量机预测   总被引:1,自引:0,他引:1       下载免费PDF全文
由于参数的选择范围较大,在多个参数中进行盲目搜索最优参数的时间代价较大,且很难得到最优参数.为此,提出一种基于改进人工鱼群算法(AFSA)的支持向量机(SVM)预测算法.对AFSA进行改进,并使用改进算法优化SVM.实验结果表明,与遗传算法、粒子群优化算法和基本AFSA优化的支持向量机相比,该算法的均方误差降低为2.51×10-3,提高了预测精度.  相似文献   

7.
提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算法具有更高的分类性能。  相似文献   

8.
支持向量机的参数选择仍未有系统的理论指导,其优化选择一直是支持向量机的一个重要研究方向。考虑到人工鱼群算法优化支持向量机参数往往易陷入最优参数组合微小邻域的问题,构造了用于支持向量机参数优化的AFMC算法。该算法前期利用鱼群算法较好的并行寻优性能,能快速寻得问题的近似最优解,而后利用MonteCarlo法进行局部寻优,以实现快速、有效地获取强近优解。数值实验结果表明,该算法具有较好的分类性能和较快的寻优速度,验证了在支持向量机参数寻优中的有效性和可行性。  相似文献   

9.
基于遗传算法的人工鱼群优化算法   总被引:3,自引:0,他引:3  
人工鱼群算法(AFSA)是一种高效的群智能全局优化技术.通过对人工鱼群算法(AFSA)不足的研究,在遗传算法的基础上,提出了基于遗传算法的人工鱼群优化算法.该算法保留了人工鱼群算法(AFSA)简单、易实现的特点,同时克服了人工鱼漫无目的的随机游动或在非全局极值点的大量聚集,显著提高了算法的运行效率和求解质量.最后通过大量的函数和实例测试结果表明,与其它算法相比,该算法是可行和有效的,具有运行速度快和求解精度高等特点.  相似文献   

10.
针对日益严重的雾霾污染问题,提出融合协同进化人工鱼群算法和支持向量机的雾霾预测方法.首先,运用佳点集构造均匀分布的种群,并引入自适应视野范围策略、自适应步长策略、种群间协同策略,提出协同进化人工鱼群算法.然后,使用协同进化人工鱼群算法,优化支持向量机的主要参数.最后,构建基于支持向量机的雾霾预测模型,预测雾霾天气.在10个测试函数上的实验证明协同进化人工鱼群算法的性能,在6个UCI数据集上的实验验证预测模型的稳定性和有效性.  相似文献   

11.
针对人工鱼群算法(AFSA)局部寻优不精确等问题,提出一种引入贪心鱼群改进人工鱼群算法(IAFSASF)的方法.贪心鱼群具有不同于普通鱼群的行为策略,在觅食行为中贪心鱼群紧紧跟随在最优适应度的人工鱼的附近进行食物搜索,而不执行追尾和聚群行为,因此,贪心鱼群具有更好的局部寻优能力.实验证明:IAFSASF比原有算法在减少时间复杂度的同时有效提高了求解精度.  相似文献   

12.
一种基于人工鱼群和文化算法的新型混合全局优化算法*   总被引:2,自引:0,他引:2  
提出一种基于人工鱼群和文化算法的新型混合全局优化算法,该混合算法的思想是将人工鱼群嵌入文化算法框架中,作为种群空间的一个进化过程;通过从进化种群中获得的知识组成知识空间,两空间具有各自群体并独立并行演化,从而实现增加人工鱼群的群体多样性。最后通过数值实例仿真结果表明,本算法具有较高的计算精度和收敛速度。  相似文献   

13.
为了提高短时交通流量的预测精度,针对最小二乘支持向量机(LSSVM)参数优化难题,提出一种人工鱼群算法(AFSA)和LSSVM相结合的短时交流量预测模型(AFSA-LSSVM),通过采用AFSA优化LSSVM参数,并采用具体短时交通流量数据进行仿真实验。仿真结果表明,相对于参比模型,AFSA-LSSVM可以获得更优的LSSVM参数,能够更加准确地描述短时交通流量变化趋势,提高了短时交通量的预测精度,为非线性短时交通流量预测提供了一种新的研究思路。  相似文献   

14.
针对基本人工鱼群算法在寻优过程中易在非全局极值点附近大量聚集,导致寻优精度降低、收敛速度过慢、人工鱼群多样性降低等问题,提出了一种基于Log-Linear模型的Gauss-Cauchy自适应人工鱼群算法。首先,在基本人工鱼群算法中引入Log-Linear模型来优化人工鱼的三个行为;其次,在算法中引入自适应调整人工鱼视野和步长的策略,随着算法的进行提高了人工鱼的搜索范围和寻优精度;再次,利用Gauss-Cauchy变异来提高人工鱼的多样性。仿真实验结果表明,该算法与其他改进算法相比,有效地提高了收敛速度和寻优精度,保持了人工鱼群的多样性。  相似文献   

15.
徐红  彭力  陈容 《计算机应用研究》2013,30(8):2541-2544
分析了支持向量机(support vector machine, SVM)目前主要存在的问题和参数选择对分类性能的影响后, 提出了以改进粒子群算法优化SVM关键参数的优化SVM算法。将加入拥挤度因子的微粒群算法引入到SVM中, 在不牺牲泛化性能的前提下, 对其参数进行优化, 增加了SVM初始化参数的多样性, 减慢了局部搜索, 促进其在全局范围内的寻优搜索, 以有效克服SVM算法过分依赖初始值和容易陷入局部极小值的缺点, 并利用由粗到精的策略构造多层SVM人脸表情分类器, 在提高准确率的基础上加快分类的速度。实验证明, 新算法具有速度快、准确率高的优点。  相似文献   

16.
在分析人工鱼群算法(AFSA)不足的基础上,研究了一种改进的人工鱼群算法,改进主要体现在两个方面:引入人工鱼移动最佳步长算子;改进觅食行为。将改进算法用于径向基神经网络的训练过程,建立相应优化模型,并将其应用到人脸表情的识别中。研究表明,改进算法具有收敛速度快、识别率高等优点。  相似文献   

17.
云人工鱼群算法   总被引:3,自引:0,他引:3       下载免费PDF全文
借鉴人工鱼群算法的思想,利用云模型云滴的随机性和稳定倾向性的特点,提出了一种新的人工鱼群算法——云人工鱼群算法,并用于求解具有变量边界约束的非线性的复杂函数最优化问题。计算机仿真结果表明,云人工鱼群算法具有计算精度较高,搜索速度较快等特点,具有一定的参考和应用价值。  相似文献   

18.
粒子群和人工鱼群混合优化算法   总被引:3,自引:1,他引:2  
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号