首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
无碳化物贝氏体组织与性能的研究   总被引:1,自引:0,他引:1  
张清辉  杨军  张涛 《鞍钢技术》2003,(3):30-31,34
研究了无碳化物贝氏体的组织与机械性能。结果表明,在低碳贝氏体钢基础上,通过加入一定量的硅元素,利用其在贝氏体组织转变过程中抑制碳化物析出作用,得到由非等轴铁素体加马氏体和残余奥氏体(M—A)岛或由板条状铁素体及其板条间残余奥氏体(Ar)膜组成的无碳化物贝氏体组织,既具有高强度、高硬度,又具有较高的低温冲击韧性。  相似文献   

2.
准贝氏体高强耐磨钢的开发和工艺研究   总被引:1,自引:0,他引:1  
葛兵  宋波 《宽厚板》2006,12(2):26-31
研究在典型贝氏体钢的成分基础上加入阻止碳化物析出的元素S i,开发出以贝氏体铁素体(BF)和残余奥氏体(AR)组成的准贝氏体组织的高强耐磨钢,在适当的工艺下钢板可获得最佳的综合性能,具有良好的强韧性、耐磨性和焊接性。  相似文献   

3.
赵佳莉  张福成  于宝东  刘辉 《钢铁》2017,52(1):71-80
 对一种新型70Si3MnCrMo钢进行了等温和连续冷却贝氏体相变热处理。利用拉伸和冲击试验研究试验钢的力学行为,利用XRD、SEM和TEM等方法对试验钢进行了相组成分析和微观组织形貌观察。研究结果表明,试验钢经等温贝氏体相变,其最佳综合力学性能出现在200 ℃回火,强塑积为26.4 GPa·%。经连续冷却贝氏体相变,其最佳综合力学性能出现在300 ℃回火,强塑积达到28.6 GPa·%。回火温度较低的情况下,热处理后的组织为由贝氏体铁素体和残余奥氏体组成的无碳化物贝氏体组织,这种无碳化物贝氏体由超细贝氏体铁素体板条而获得超高强度,由一定量的高碳残余奥氏体来保证较高的塑性和韧性。试验钢经连续冷却贝氏体相变,其贝氏体铁素体板条中出现了超细亚单元,并且残余奥氏体呈薄膜状和小块状两种形态分布于贝氏体铁素体板条之间,这两种形态残余奥氏体的稳定性不同。拉伸试样在变形过程中残余奥氏体持续发生TRIP效应,直至全部残余奥氏体都发生转变生成应变诱发马氏体,从而使钢得到更好的强、塑性配合,表现出十分优异的综合性能。  相似文献   

4.
心部高韧性、表面高硬度的材料是抗冲击载荷轴承、齿轮等关键零部件的重要要求。以超细贝氏体为对象,进行局部快速热处理,得到局部高硬度、心部高韧性的梯度结构,研究快速热处理过程中超细贝氏体组织的相变行为,以及梯度组织和性能变化规律。结果表明,超细贝氏体钢在加热时,残余奥氏体分解为铁素体和碳化物,贝氏体铁素体粗化,在快速热处理中存在相变滞后。超细贝氏体钢经过局部快速热处理后形成一个组织和性能梯度过渡的结构。硬化区组织由淬火得到的马氏体和残余奥氏体组成,随着深度增加,组织中的马氏体含量减少,初始超细贝氏体的回火产物逐渐增加。硬化区的硬度高达63HRC,随着深度增加逐渐降低至38HRC,硬度相对基体下降约6HRC。  相似文献   

5.
无碳化物贝氏体是新近研究和发展起来的一种新型组织结构,是高强度超级钢的一种理想的基体组织,它是含碳过饱和的贝氏体铁素体与富碳的残余奥氏体的复合组织,钢中没有碳化物。适量含硅钢等温处理都可以得到无碳化物贝氏体。由无碳化物贝氏体组织构成的钢具有高强、高韧和耐磨等特性,加工性能也好,因此,它具有广阔的应用前景。火车车轮是重要的行走部件,受载复杂,股役条件恶劣,现有材料再提高综合力学性能指标则比较困难,而无碳化物贝氏体带来了新的曙光,将是21世纪最有发展前途的钢铁材料之一。  相似文献   

6.
张冰  窦志超  赵苏娟  卢弘 《钢铁》2013,48(2):53-58
研究开发了一种适用于高强高韧抗腐蚀无缝钢管的镍系无碳化物贝氏体钢,其微观组织由无碳化物贝氏体、马氏体和片状残余奥氏体组成.片状残余奥氏体的存在使无碳化物贝氏体无缝钢管在保持高强度的同时,具有良好的韧性.为了满足多种强韧性配合的应用,使用Gleeble热模拟、X射线衍射仪、金相等手段对不同热处理制度下得到的片状残余奥氏体含量进行了研究,得到了不同热处理制度下残余奥氏体形态和含量的变化规律,为制造高强高韧抗腐蚀石油专用无缝管材提供了重要的试验依据.  相似文献   

7.
为了获得具有良好强度一韧性平衡弹簧钢的重要信息,检测了Si和Cr含量对中碳钢贝氏体显微组织的影响。将4种实际的中碳钢JIS-S55C、SUP9、SUP7和SUP12在1000℃奥氏体化后,在温度介于300oC和500℃之间进行等温转变,借助扫描电子显微镜以及透射电子显微镜观察显微组织。在没有Si和Cr的$55C钢贝氏体转变早期,形成碳化物,而在SUP7和SUPl2钢中,碳化物的析出受Si含量的增加而受到抑制。在贝氏体转变中期,由于残余奥氏体中的碳浓度增加,导致残余奥氏体的分数随Si和Cr的增加而增加。事实上,添加硅可促进游离碳化物贝氏体铁素体,并且通过碳的富集,导致残余奥氏体的数量较大。  相似文献   

8.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350~410℃保温600 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温温度对超高强相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成;贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温温度增加,固溶C原子扩散系数提高,促进残余奥氏体中碳化物的析出。因此,奥氏体中的平均固溶C含量降低,使得TRIP钢残余奥氏体分数降低,马氏体体积分数增加。贝氏体等温温度由350℃增加至410℃时,TRIP钢屈服强度由720 MPa降低至573 MPa,抗拉强度由1 195 MPa提高至1 312 MPa,伸长率A_(80)由17.8%降低至12.5%。贝氏体等温温度为350℃时,冷轧TRIP钢具有优良的综合力学性能,强塑积达到21 270 MPa·%。  相似文献   

9.
周松波  胡锋  尹朝朝  吴开明 《钢铁》2020,55(11):103-111
 中碳贝氏体钢由亚微米贝氏体铁素体板条和残余奥氏体组成,对韧性起主要作用的为残余奥氏体,通过细化块状组织能显著提高贝氏体钢的韧性。为了探究块状组织细化对断裂行为的影响,采用两步贝氏体等温工艺对中碳(碳质量分数为0.3%)贝氏体钢中块状组织进行细化,对拉伸和冲击性能及其裂纹扩展行为变化进行了研究。利用光学、扫描电子(SEM)、透射电子(TEM)显微镜、X射线衍射(XRD)等对试验钢的显微组织类型和尺寸、拉伸和冲击性能及断口形貌进行表征和分析。结果表明,与一步贝氏体工艺相比,两步贝氏体工艺中新形成的贝氏体铁素体分割细化块状马氏体+残余奥氏体,随着真应变的增加,加工硬化的效果更好;断裂形式为韧性断裂,且韧窝的数量、深度更优于一步贝氏体转变,塑韧性更佳。  相似文献   

10.
吴迪  李壮  吕伟 《钢铁》2012,47(8):36-38,40,42
通过实验室热轧机组的控轧控冷试验,研究了控轧控冷参数对超高强铁素体/贝氏体双相钢组织性能的影响。结果表明,采用不同温度终轧,轧后不同方式冷却,抗拉强度几乎都在1 000MPa以上,屈强比在0.54~0.62之间,伸长率在13%~17%之间。铁素体晶粒随终轧温度降低和冷却速度加快而细化;终冷温度降低,贝氏体量增多。经800℃终轧后层流冷却至560℃左右空冷,由于铁素体晶粒细化,组织中大量的粒状贝氏体、无碳化物贝氏体、少量的孪晶马氏体以及残余奥氏体的存在使抗拉强度达1 130MPa,伸长率达16%,强塑积达到18 080MPa.%的最高值。控轧控冷获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织,使试验钢具有了优异的力学性能。  相似文献   

11.
The effect of additions of Nb, Al and Mo to Fe‐C‐Mn‐Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X‐ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise ~ 50 % of polygonal ferrite, 7 ‐12 % of retained austenite, non‐carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure‐property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C‐Si‐Mn‐Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb‐Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C‐Si‐Mn‐Nb steel leads to a good combination of strength (~ 940 MPa) and elongation (~ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ~7 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb‐Mo‐Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb‐Mo‐Al steel appears to be more granular than in the Nb‐Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.  相似文献   

12.
A ferrite-bainite-martensite (F-B-M) microstructure was produced in a medium-carbon microalloyed (MA) steel through two routes, namely, low-temperature finish forging and rolling, followed by a two-step cooling (TSC) and annealing. Transmission electron microscopy (TEM) was employed to study the microstructural evolution in control forged and rolled material after TSC followed by annealing (TSCA). A TEM investigation was also carried out on samples low-cycle fatigue (LCF) tested at low and high total strain amplitudes of 0.4 and 0.7 pct in case of the forged steel (F-B-M(F)TSCA) and 0.55 and 0.8 pct for the rolled steel (F-B-M(R)TSCA), respectively. Microstructural changes accompanying the LCF testing were identified. The two-step cooled microstructure processed through forging (F-B-M(F)TSC) as well as rolling (F-B-M(R)TSC) revealed a complex multiphase microstructure, along with films and blocks of retained austenite. In both microstructural conditions, vanadium carbide precipitates were too fine to be identified after the TSC treatment. Annealing after TSC produced a stress-free microstructure. The F-B-M(F)TSCA microstructure predominantly consisted of granular/lower bainite, lath martensite, and polygonal ferrite with interlath films as well as blocks of retained austenite, while the F-B-M(R)TSCA microstructure predominantly consisted of lath martensite, granular/lower bainite, and polygonal ferrite with interlath strips/films of retained austenite. Lath martensite content was higher in the F-B-M(R)TSCA condition than in the F-B-M(R)TSCA condition. In both conditions, vanadium carbide precipitates could be seen after annealing. Fatigue-tested F-B-M(F)TSCA microstructure up to a total strain amplitude of 0.4 pct and F-B-M(F)TSCA microstructure up to a total strain amplitude of 0.55 pct were stable. Lath martensite did not undergo deformation and in both microstructural conditions dislocation cell structures were not observed in the ferrite or bainite regions. The interlath retained austenite strips/films played a significant role in preventing the softening during fatigue loading. First, it was stable up to a total strain amplitude of 0.4 and 0.55 pct in the respective microstructures. Second, it underwent heavy deformation during fatigue loading at high total strain amplitudes, thereby accommodating the strain. Fatigue-tested F-B-M(F)TSCA microstructure at a total strain amplitude of 0.7 pct and F-B-M(R)TSCA microstructure at a total strain amplitude of 0.8 pct revealed deformed bainite/martensite laths, dislocation cells, and slip bands in the ferrite regions, which are characteristic features of cyclic softening. The retained austenite transformed to martensite through a strain-induced transformation mechanism and, at that stage, the microstructure contained in addition dislocation-rich bainite and ferrite.  相似文献   

13.
 Mechanical properties and microstructure in high strength hot dip galvanizing TRIP steel were investigated by optical microscope (OM), transmission electron microscope (TEM), X-ray diffraction (XRD), dilatometry and mechanical testing. On the heat treatment process of different intercritical annealing (IA) temperatures, isothermal bainitic transformation (IBT) temperatures and IBT time, this steel shows excellent mechanical properties with tensile strength over 780 MPa and elongation more than 22%. IBT time is a crucial factor in determining the mechanical properties as it confirms the bainite transformation process, as well as the microstructure of the steel. The microstructure of the hot dip galvanizing TRIP steel consisted of ferrite, bainite, retained austenite and martensite during the short IBT time. The contents of ferrite, bainite, retained austenite and martensite with different IBT time were calculated. The results showed that when IBT time increased from 20 to 60 s, the volume of bainite increased from 14.31% to 16.95% and the volume of retained austenite increased from 13.64% to 16.28%; meanwhile, the volume of martensite decreased from 7.18% to 1.89%. Both the transformation induced plasticity of retained austenite and the hardening of martensite are effective, especially, the latter plays a dominant role in the steel containing 7.18% martensite which shows similar strength characteristics as dual-phase steel, but a better elongation. When martensite volume decreases to 1.89%, the steel shows typical mechanical properties of TRIP, as so small amount of martensite has no obvious effect on the mechanical properties.  相似文献   

14.
以轴承用高碳贝氏体钢为研究对象,采用扫描电子显微镜、X射线衍射仪及硬度计等手段研究了不同奥氏体化温度对贝氏体钢组织形成及性能的影响,遴选出最优的奥氏体化工艺,同时对比了不同贝氏体等温转变后有无Ce元素添加的高碳贝氏体钢的力学性能.试验结果表明,950℃奥氏体化温度得到的组织中无明显的大颗粒未溶碳化物,组织尺寸和硬度性能...  相似文献   

15.
为探究NM300TP热轧耐磨板最佳冷却工艺,采用两段式冷却工艺,通过控制中冷温度和空冷时间,得到不同冷却工艺下的轧板.轧板具有贝氏体+铁素体+残余奥氏体的三相组织,无需轧后热处理便可获得良好的综合力学性能.研究结果表明,耐磨钢中各相含量与其力学性能有明显的对应关系,贝氏体越多,布氏硬度越大,抗拉强度越高,磨损失重越小,...  相似文献   

16.
Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.  相似文献   

17.
利用OM、SEM、XRD、EBSD和室温拉伸试验机等研究了CSP热轧TRIP钢中间缓冷时间及贝氏体等温时间对组织和力学性能的影响。结果表明,随着中间缓冷时间的延长,试验钢中的铁素体和残余奥氏体体积分数增加,贝氏体体积分数减少;抗拉强度基本不变,屈服强度逐渐降低,断后伸长率和强塑积变化不明显。中间缓冷时间为6 s时,可满足CSP产线的要求。对贝氏体相变时间的研究表明,当等温时间为15 min时,试验钢中的残余奥氏体主要分布于铁素体/铁素体界面、铁素体/贝氏体界面以及贝氏体中,体积分数约为7.1%,表现出良好的TRIP效应。其抗拉强度、屈服强度、断后伸长率和强塑积分别达到744.0 MPa、522.5 MPa、29.3%和21.8 GPa·%,力学性能最优。当等温时间延长至50 min时,试验钢中的贝氏体含量增加,残余奥氏体体积分数减少至2.7%,强塑积明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号