首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protection of steel structures, using so-called intumescent coatings, is an efficient and space saving way to prolong the time before a building, with load bearing steel constructions, collapses in the event of a fire. In addition to the intumescent coating, application of a primer may be required, either to ensure adhesion of the intumescent coating to the steel or to provide corrosion resistance. It is essential to document the performance of the intumescent coating together with the primer to ensure the overall quality of coating system. In the present work, two epoxy primers were used to investigate the potential failure mechanism of a primer applied prior to an intumescent coating. The analysis was carried out using; (1) gas-fired test furnace, (2) a specially designed electrically heated oven, and (3) thermo gravimetric analysis. When tested below an acrylic intumescent coating, exposed to a gas-fired furnace following the ISO834 fire curve (a so-called cellulosic fire), one of the primers selected performed well and the other poorly. From tests in the electrically heated oven, it was found that both primers were sensitive to the film thickness employed and the presence of oxygen. At oxygen-rich conditions, higher primer thicknesses gave weaker performance. In addition, a color change from red to black was observed in nitrogen, while the color remained red in the oxygen–nitrogen mixture. In summary, the results suggest that an adequate choice of primer, primer thickness, and intumescent coating is essential for a good performance of an intumescent coating system.  相似文献   

2.
A combination of acrylic binder and flame-retardant ingredients was used to synthesize the solvent-borne intumescent coatings designed for steel substrates. The influences of individual and various combinations of flame-retardant fillers on the fire protection and mechanical properties of the coatings were characterized by using Bunsen burner, thermogravimetric analysis, limiting oxygen index, field emission scanning electron microscopy, freeze–thaw cycles, static immersion and pull-off type equipment. It was found that the combination of aluminium hydroxide (Al(OH)3) and titanium dioxide (TiO2) has significantly improved the fire protection, thermal stability and water resistance of the coating. This formulation had an LOI value of 34, which indicated good flammability resistance of the coating. The adhesion strength tests showed that the coating added with magnesium hydroxide (Mg(OH)2) exhibited maximum bonding strength to the metal surface due to its effective interface adhesion. Hence, the findings from this study revealed that the selection of appropriate combinations of flame-retardant fillers strongly influenced the physical and chemical properties of the coatings.  相似文献   

3.
In the present work, the effects of inorganic fillers on the fire retardant performance of waterborne intumescent coatings are investigated by thermogravimetry (TG), capillary rheometer, X-ray diffraction spectroscopy (XRD) and fire retardant test, etc. The TG results indicate that the thermal stability of vinyl acetate-vinyl ester of versatic acid copolymer (hereafter VAc-VeoVa) in VAc-VeoVa/Si–Al powder composite or in VAc-VeoVa/Halloysite nanometer-tube (HNTs) composite is improved mainly due to the release of the crystal water in Si–Al powder or HNTs. Capillary rheometer analysis results demonstrate that the VAc-VeoVa/HNTs composite melt possesses the highest shear viscosity, because of the large specific surface area of HNTs and the strong interaction force between HNTs and VAc-VeoVa. Weight loss difference (ΔT) of filler/ammonium polyphosphate (APP) composites show antagonism effects at 300 °C < T < 650 °C and synergistic effects at T > 650 °C. The fire retardant test results show the coatings using TiO2/Si–Al powder/HNTs (8/1/1) as multiple fillers obtains an intumescent char layer with intumescent ratio of 28.14 and presents excellent fire retardant performance (3327 s). It is found that the high melt viscosity, resulted from the effect of inorganic filler, immobilizes the relaxation and rotation of polymer chain, restricts the intumescent behavior of the coatings, which leads to the formation of an intumescent char layer with lower intumescent ratio and the shortening of the fire retardant time. Moreover, the antagonism effect between filler and APP reduces the catalytic dehydration efficiency of pentaerythritol (PER) and VAc-VeoVa, which, as a result, also affects the final fire retardant performance of coatings.  相似文献   

4.
Rutile-type TiO2 (r-TiO2) or anatase-type TiO2 (a-TiO2) in association with a conventional intumescent flame retardant system which contains ammonium polyphosphate/pentaerythritol/melamine (APP–PER–MEL) was introduced to silicone-acrylate coatings to improve the fire resistance. The effect of TiO2 on the fire-resistance and thermal properties of APP–PER–MEL coating has been investigated by using big panel method and thermogravimetry (TG). The limit of fire-resistance of the sample containing 30 phr rutile-type TiO2 (73 min) is much longer than that of the sample containing 30 phr anatase-type TiO2 (34 min). The morphology and structure of charring layers were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The relationship between charring process and melt flow rate (MFR) of silicone-acrylate was also discussed. It is suggested that MFR value can significantly affect the formation of char, and a moderate silicone-acrylate MFR is required to form good quality char.  相似文献   

5.
赵薇 《精细化工》2013,30(9):981-984
该文考察了4种抑烟剂的协同效应,对膨胀型防火涂料的抑烟效果。分别选用主族化合物及过渡金属化合物,包括Mg(OH)2、Sb2O3、二茂铁、Cu2O 4种抑烟剂。根据正交实验设计,选用四因素三水平,制备了9个样品。使用锥形量热仪测定其动态生烟性能。通过比较所得到的生烟速率及总生烟量,发现当Mg(OH)2、Sb2O3、二茂铁、Cu2O的质量分数分别为2%、1%、2%、1.5%时,对于膨胀型防火涂料的生烟量最小,抑烟剂的效果最好。同未添加抑烟剂的样品相比,生烟量下降46%。  相似文献   

6.
The aim of this study was to develop intumescent flame-retardant coatings that incorporate chicken eggshell (CES) waste as a novel eco-friendly bio-filler. Three flame-retardant additives, namely, ammonium polyphosphate phase II, pentaerythritol and melamine were mixed with flame-retardant fillers and acrylic binder to synthesize the intumescent coatings. The fire performance of the coatings was evaluated in accordance with ‘BS 476: Part 6-Fire Propagation’ and ‘BS 476: Part 7-Surface Spread of Flame’ test standards. It was found that 4 out of 5 of the coated specimens (B, C, D and E) neither showed surface spread of flame nor any afterglow combustion upon fire exposure. The addition of 5.0 wt% and 2.5 wt% eggshell bio-filler into formulations B and E, respectively, improved fire protection due to char formation, with better morphology, height and structure of the protecting shield. The filler compositions of samples D (3.4 wt% TiO2/3.3 wt% Al(OH)3/3.3 wt% Mg(OH)2) and E (2.5 wt% TiO2/2.5 wt% Al(OH)3/2.5 wt% Mg(OH)2/2.5 wt% CES) applied at a thickness of 1.5 ± 0.2 mm achieved the lowest fire propagation index with a value of 4.5 and 5.0, respectively (BS 476 Part 6, Class 0 materials) which indicates excellent fire-stopping properties. The results showed that the coatings were effective in fire protection, with good qualities of water resistance, thermal stability, and adhesion strength. Significantly, coating E (with CES) has proved to be efficient in the protection of plywood against fire.  相似文献   

7.
A novel intumescent coating technology for metallic surfaces was developed using functionalized clays, which were intercalated and exfoliated into nanodimensions. The nanoclays were formulated in epoxy resins and blended with appropriate additives to design intumescent coatings for metallic surfaces. With the high dispersion of nanoclay the flame retardancy is improved. The extent and the homogeneity of the exfoliation and dispersion of the clay particles were assessed employing small-amplitude oscillatory shear. The performance and properties of the coatings were evaluated by means of fire resistance testing, thermo-gravimetric analysis and mechanical properties. The incorporation of the nanoclays significantly increased the elasticity and the viscosity of the intumescent formulations and improved the fire resistance of the epoxy coatings. It is observed that significant gains in flame retarding properties could be achieved when the clay platelets could be adequately exfoliated and dispersed.  相似文献   

8.
Cone calorimetry tests performed at 50 kW/m2 heat flux have been exploited for assessing the fire resistant properties of nano-structured intumescent coatings containing modified layered double hydroxides (hydrotalcites, LDHs) and deposited on steel plates. The effects of different types of modified hydrotalcites (i.e. magnesium–aluminum lactate hydrotalcite, magnesium–aluminum gluconate hydrotalcite, magnesium–aluminum hydrotalcite modified with a fatty acid, magnesium–aluminum hydrotalcite modified with rosin) on the thermal shielding performances of the intumescent coatings and their intumescent degree have been thoroughly discussed and compared with the pristine unfilled counterparts.More specifically, the coatings containing organo-modified LDHs showed better thermal shielding performances with respect to the reference intumescent coating; on the contrary, the use of unmodified hydrotalcite in the intumescent formulations was found detrimental. The thermal shielding performances of the coatings filled with modified LDHs were found to be strictly related to the intumescent degree developed during the cone calorimetry tests. In addition, it was possible to compare the thermal shielding performances of the nanofilled coatings by evaluating the temperatures achieved after 2000 s exposure to the 50 kW/m2 heat flux of the cone: the thermal shielding performance sequence was LDH-GL > LDH-RS > LDH-LA > LDH-FA > LDH).Finally, the intumescent degree of the modified coatings was found to decrease with increasing the hydrotalcite content, hence lowering their thermal shielding performances.  相似文献   

9.
The purpose of this research was to evaluate the influences of filler type and its content on the performance of a water-based intumescent fire-retardant coating. Three fillers (vermiculite, celite, and aluminum hydroxide) were added to the intumescent paint formulation. The thermal and fire protective properties were studied with thermogravimetric analysis (TGA), torch test, electrical furnace, scanning electron microscopy (SEM), and Fourier transform infrared analysis (FTIR). The results showed that adding fillers into coatings up to 3% could improve the intumescent coating's behavior and increase its endurance against flames. Of the three fillers used, vermiculite showed a better performance in the torch test, attributed to its chemical and physical structure. Vermiculite has low thermal conductivity and is considered an appropriate filler for heat-insulation. The final back-plate temperatures in the torch test for the vermiculite-containing samples were around 100°C–150°C lower than that of other samples. Moreover, vermiculite's addition improved the coating's expansion by 10% compared with the control sample's. The vermiculite sample's char layer morphology showed a uniform cell size distribution, indicating structural robustness. The coating samples successfully transformed polypropylene flammability from highly flammable to V0 level in the UL 94 vertical burning test standard. The results showed that vermiculite could improve intumescent paint's fire resistance and be used as an enhancer in intumescent coating formulations.  相似文献   

10.
An experimental setup was proposed for evaluating the thermal shielding efficiency of intumescent coatings. In particular, a cone calorimeter as heater source was coupled with a thermocouple as detector of the temperature of steel plates coated with intumescent coatings. According to ENV 13381-4 test procedure, the heating curves of the setup was measured by plate thermocouple and compared with ISO 834 standard curve. Meanwhile, the comparison was also made between temperature profiles of blank steel plates at different heat fluxes and unprotected steel elements under ISO fire. The possible correlation between bench scale and large scale test was hence discussed. Several factors (heat flux, distance to cone heater, coating thickness, sample size, edge effect and heat insulator) were deeply investigated and discussed: significant relationships between these parameters and the thermal protective properties of the intumescent coating were evidenced; furthermore a fully developed intumescent char could be obtained by controlling the aforementioned parameters. As a conclusion, the proposed bench-scale test was found to be comparable to the large scale test only in the early heating stages.  相似文献   

11.
This paper highlights the possibility of inverse gas chromatography for the surface characterization of common fillers (CaCO3, talc, SiO2,) for paints and coatings. Divided solids are described, on the one hand, by the dispersive component of their surface energy and, on the other, by a specific parameter indicating their acid-base interaction potential. The role of the surface morphology at a molecular level is also examined. It is demonstrated that steric effects play an important role in the adsorption of probes on lamellar solids like talc. The consequences of surface treatments as well as examples of practical applications are also reported.  相似文献   

12.
Electrochemical impedance spectroscopy (EIS) was coupled with a thermostimulated current (TSC) method to investigate the effect of fillers on the barrier properties of an epoxy-polyamido amine waterborne coating on a 2024 aluminium alloy. Four systems were studied: a clear coat and three pigmented coatings (with and without chromates). The results obtained by TSC highlight the specific action of chromates which decrease the molecular mobility (hardening) of the coating by comparison with neutral fillers. This has been explained by the high polarity of chromates that enhances interactions with the binder. Impedance measurements carried out for free-standing films and for coated aluminium alloy have corroborated the role of chromates on the barrier properties of the coating which remain high as a function of exposure time in a 0.5 M NaCl solution. TSC was also used to measure the glass transition temperature (Tg) of the hydrated systems. Tg was significantly decreased when the coatings were hydrated due to a strong plasticization effect induced by water uptake. For the different systems, we conclude that the weak barrier properties of the films (attached films) or the decrease of the barrier properties with time (free-standing films) were linked to the variation of the glass transition temperature by water uptake.  相似文献   

13.
Mario Gauthier  Abdul Munam 《Polymer》2009,50(25):6032-2467
Model filler particles were obtained by grafting polyisoprene (PIP) chains onto spherical latex particles of polystyrene cross-linked with 12 mol% divinylbenzene. These particles, with a narrow size distribution and a diameter of ca. 400 nm, were synthesized by emulsifier-free starved-feed emulsion polymerization. Acetyl coupling sites were introduced randomly at either low (5 mol%) or high (30 mol%) target substitution levels on the latex particles by Friedel-Crafts acylation with acetyl chloride and AlCl3 in nitrobenzene. ‘Living’ polyisoprenyllithium chains, generated from isoprene and sec-butyllithium (sec-BuLi), were then coupled with the acetylated particles. The PIP side chains had a high 1,4-polyisoprene microstructure content and a number-average molecular weight (Mn) of either 1.5 × 103 (1.5 K), 5 × 103 (5 K), or 3 × 104 (30 K). The PIP content of the grafted particles was determined from the yield of isolated particles and by 1H NMR spectroscopy analysis. The grafted latex particles were blended in solution with linear polyisoprene (Mn = 3.95 × 105, 395 K). The influence of the filler-matrix interactions on the rheological behavior of the blends was determined by dynamic mechanical analysis for the different filler blends. Increases in complex viscosity and storage modulus, and decreased damping factors were observed in all cases relatively to the pure matrix polymer. The enhancements, decreasing in the order 30 mol% > 5 mol% acetylation, and with the grafted PIP chain length as 30 K > 5 K ≈ 1.5 K, are deemed to reflect the extent of interactions between the filler particles and the polymer matrix.  相似文献   

14.
W. Huang  Y. Ikeda  A. Oku   《Polymer》2002,43(26):7295-7300
The depolymerization of high-temperature-vulcanized (HTV) silicone rubbers containing filler silica and alumina into cyclosiloxane monomers and spontaneous recovery of fillers were studied. First, HTV silicone rubber was treated with different types of solvents in the presence of KOH to find that a triad mixture of diethylamine, methanol and hexane was appropriate not only to dissolve the silicone rubber to a suspension but also to separate fillers completely by filtration. The filtrate was distilled to remove solvent first and then give pure cyclosiloxane monomers in 76–84% yields. Second, the rubbers were treated with other types of triad mixture of solvents and bases, e.g. tetramethylammonium hydroxide, hexane and diethylamine. After filtration, residue was again treated with the amine and hexane to recover clean fillers in 83–93% yields. Cyclosiloxane monomers were also obtained from the combined filtrates in 67–78% yields.  相似文献   

15.
介绍了膨胀型阻燃剂(IFR)的组成、阻燃机理、种类及以及处理技术,概述了膨胀型阻燃剂在塑料中的应用研究进展,指出了其今后的发展趋势。  相似文献   

16.
针对无卤膨胀型阻燃剂与聚丙烯间存在相容性差的问题,综述了几种改善相容性的方法:对阻燃剂与聚丙烯进行表面改性,加入偶联剂、相容剂,采用微胶囊化技术;引入新型炭源;通过合成三组分一体化的单分子阻燃剂改善聚丙烯与阻燃剂的相容性。  相似文献   

17.
无机非金属矿物填料的研究进展   总被引:1,自引:0,他引:1  
简要概述了无机非金属矿物填料出现的时代背景、填料性质及对聚合物性能的影响、应用技术现状以及未来的发展趋势 ,并提出了一些有待进一步完善的不足之处  相似文献   

18.
将多聚磷酸铵、季戊四醇、三聚氰胺及有机化蒙脱土通过160℃预混制备了膨胀型阻燃剂(IFR),马来酸酐接枝聚丙烯(PP-g-MAH)为增容剂,选用SBS、EVA、CPE、MBS分别对PP进行增韧改性,采用熔融插层法制备了阻燃聚丙烯(FRPP)。利用了TGA、LOI、SEM和力学性能测试等研究了不同种类的增韧剂和不同OMMT含量对阻燃PP的热稳定性能、阻燃性能、力学性能的影响。结果表明:加入IFR,PP的极限氧指数由17%升为31%,其中CPE体系的极限氧指数达到31%;体系的起始分解温度由纯PP的440.8℃升高到459.5℃,600℃的残炭率比纯PP提高15%以上。SBS的加入,使体系韧性改善最明显,其中OMMT对SBS增韧体系的拉伸强度有改善,对其他增韧体系反而降低拉伸强度。综合FRPP性能,采用SBS为体系的增韧剂,添加1phr OMMT,可以在提高体系的韧性同时,阻燃性能和拉伸性能可以得到进一步的改善。  相似文献   

19.
The effects of hydroxy silicone oil as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the IFR system mainly consisted of the ammonium polyphosphate (APP), melamine (MEL) and pentaerythritol (PER). The UL 94 rating, thermogravimetric analysis (TGA), cone calorimeter (CONE) and digital photograph were used to evaluate the synergistic effects of hydroxy silicone oil (HSO). It has been found that the PP composite containing only APP, MEL and PER does not show good flame retardancy at 30% additive level. The cone calorimeter results show that the heat release rate, mass loss rate, mass, total heat release, carbon monoxide and carbon dioxide of PP/APP/MEL/PER/HSO composites decrease in comparison with the PP/APP/MEL/PER composite. The digital photographs demonstrated that HSO could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of HSO plays a synergistic effect in the flame retardancy.  相似文献   

20.
王晗  林洋  潘哲 《辽宁化工》2009,38(9):605-610
确定了起膨胀阻燃作用的成炭剂、发泡剂以及成炭催化剂组成的阻燃体系,3种主要成分的配合比例为:催化剂质量分数在40%~60%、成炭剂质量分数10%~20%、发泡剂质量分数30%~40%,阻燃效果最佳。苯丙乳液聚合的最佳条件是:软硬单体配比为1:1,所占比例45%;乳化剂1.25%;非离子乳化剂与阴离子乳化剂比为4:1;引发剂用量为0.2%;反应温度控制在(85±1)℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号