首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
有等式约束优化问题的粒子群优化算法   总被引:3,自引:5,他引:3  
目前大多数粒子群优化算法针对无约束优化问题或不等式约束优化问题,求解有等式约束优化问题的方法是把每个等式约束变成两个不等式约束,这种方法的缺点是在进化过程中粒子位置很难满足等式约束条件,影响了收敛速度和解的精度。提出了求解有等式约束优化问题的两种新粒子群优化算法,数值试验结果表明,算法是有效的。  相似文献   

2.
肖华勇  马雷  温金环 《计算机工程》2011,37(21):170-172,175
针对只有唯一解的数独问题(即标准数独),利用改进的几何粒子群优化算法进行求解,将几何粒子群优化算法应用到数独中,解决数独求解过程中存在的局部最优解问题。通过实例讨论求解过程中最佳参数的选择,并得出较理想的结果。实验结果表明,该方法能够有效解决数独问题。  相似文献   

3.
混合遗传粒子群优化算法的研究   总被引:1,自引:0,他引:1  
为了准确辨识电动舵机的参数,提出了一种混合遗传粒子群优化算法。该算法的具体步骤是对所有粒子进行交叉操作,并对粒子交叉前后的适应度函数进行比较。如果适应度优于前者,则进行粒子替换。仿真结果表明,该算法能够减少寻优迭代次数,缩短优化计算时间,具有良好的实用性。  相似文献   

4.
基于遗传交叉因子的改进粒子群优化算法   总被引:5,自引:0,他引:5       下载免费PDF全文
提出一种基于遗传交叉因子的改进粒子群优化算法,通过自适应变化惯性权重来改善算法的收敛性能,借鉴遗传算法中的选择交叉操作增加粒子多样性,通过引入交叉因子增强群体粒子的优良特性,减小了算法陷入局部极值的可能。对几个典型的测试函数进行仿真表明,该算法较标准粒子群优化算法(PSO)提高了全局搜索能力和收敛速度,改善了优化性能。  相似文献   

5.
粒子群优化算法是基于群智能的随机全局优化技术,将它引入航空影像纹理分类,在提取纹理样本小波、分形等特征的基础上,提出了针对分类问题的粒子表达方法和群体寻优策略,实现了基于粒子群算法的纹理分类。将其与基于遗传算法的纹理分类法作比较,结果表明粒子群优化算法具有较好的寻优性能,基于该算法的纹理分类法分类精度较高且计算时间较少。  相似文献   

6.
粒子群优化算法按照认知部分和社会部分被区分为5种模型(完全模型、自认知模型、社交模型、非自身社交模型和非自身完全模型)。为了明确5种粒子群优化模型的效率,选用进化计算领域中常用的5种基准函数,分别对5种粒子群优化算法模型设置不同的参数,分析了它们在求解5种基准函数时的成功率、平均函数求值数、最佳适应度等。结果表明:PSO完全模型和非自身完全模型使用收缩系数K在某些参数设置下求解高维问题时即搜索问题的解时效率较高,社交模型和非自身社交模型在一些参数设置下求解Schaffer函数等二维问题的效率最好。  相似文献   

7.
针对图像匹配中速度慢、抗噪性差等问题,提出一种基于灰色理论和粒子群优化的快速图像匹配算法——GPSO算法。该算法首先通过粒子群初始化,获得待匹配的多个初始位置和更新速度;然后,利用模板图和当前搜索位置子图的直方图信息,形成参考序列和比较序列,设计基于两类序列间灰色关联度的适应度函数。在此基础上,各粒子根据个体经验和社会经验,利用群体智能的高效并行寻优能力,逐代逼近最佳匹配位置。实验显示,本算法在保证了一定匹配精度的情况下,明显提高了匹配速度和鲁棒性。  相似文献   

8.
在研究标准粒子群算法和遗传算法的基础上,介绍一种加入遗传选择,交叉算子以及变异算子的扩展算法,以提高粒子群算法摆脱局部极值点的能力,并且算法具有较快的收敛能力。  相似文献   

9.
阈值法分割图像时只利用图像的灰度信息,具有直观、实现简单的特点。针对传统的粒子群优化算法(Particle Swarm Optimization,PSO)分割图像易陷入局部最优的缺点,提出一种基于改进粒子群优化算法的Otsu图像阈值分割方法。以Otsu算法的类间方差作为适应度函数,在每次迭代中选取适应度较好的粒子同时加入新的粒子,以提高粒子多样性。实验表明,与Otsu算法和PSO算法相比,改进的粒子群优化算法不仅加快了收敛速度和运算速度,而且提高了图像分割的准确率。  相似文献   

10.
一种遗传算法与粒子群优化的多子群分层混合算法   总被引:3,自引:0,他引:3  
金敏  鲁华祥 《控制理论与应用》2013,30(10):1231-1238
针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点, 本文从种群个体组织结构上着手, 进行优势互补, 提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization, HGA–PSO). 算法采用分层结构, 底层由一系列的遗传算法子群组成, 贡献算法的全局搜索能力; 上层是由每个子群的最优个体组成的精英群, 采用钳制了初始速度的粒子群算法进行精确局部搜索. 文中分析论证了HGA–PSO算法具有全局收敛性, 并采用7个典型高维Benchmark函数进行测试, 实验结果显示该算法的优化性能显著优于其他测试算法.  相似文献   

11.
薛迎春  孙俊  须文波 《计算机应用》2006,26(9):2068-2070
介绍了一种利用量子行为粒子群算法(QPSO)求解矩形包络的方法。矩形包络是将二维不规则形状样片用它们的最佳包络矩形来代替,是服装排料的第一步。实验结果表明量子行为粒子群算法比粒子群算法,遗传算法能更好地解决求二维不规则形状样片的矩形包络的问题。  相似文献   

12.
陈伟  余旭初  张鹏强  王鹤 《计算机工程》2011,37(16):188-190
现有的粒子群优化(PSO)算法和遗传算法(GA)无法很好地解决高光谱影像端元提取这类离散解空间内的大规模取样优化问题。针对该问题,借鉴凸面几何学理论,利用局部模式粒子群优化的原理改进遗传算法,提出一种面向高光谱影像端元提取的粒子群优化遗传算法(PSOGA)。利用模拟数据和PHI影像对PSOGA算法和GA算法进行实验对比。分析结果证明,PSOGA算法的收敛速度优于GA算法。  相似文献   

13.
基于混合粒子群优化算法的旅行商问题求解   总被引:2,自引:0,他引:2  
俞靓亮  王万良  介婧 《计算机工程》2010,36(11):183-184,187
针对旅行商问题提出一种混合粒子群优化算法。为了增强算法的局部搜索能力,在粒子群优化算法中加入倒置、对换等局部搜索算法。利用遗传算法全局搜索能力强的特点对用粒子群优化算法求到的解进行优化,对全局最优路径通过消除交叉路径进行优化,以进一步提高混合算法的性能。仿真结果表明,中小规模旅行商问题能够在较少的代数内收敛到较满意解。  相似文献   

14.
李亚非  曹长虎 《计算机工程》2011,37(16):167-169
为充分发挥粒子群优化算法和遗传算法各自的优势,提出一种新的基于粒子群和遗传算法的协同进化算法,并将其应用于聚类分析。通过构建2个相互竞争的种群,采用相对适应度度量方法,在一个纯自举的过程中产生最优竞争个体。在现实世界数据集上的仿真实验表明,该算法在收敛精度方面优于基于遗传算法的聚类方法和基本粒子群优化聚类算法。  相似文献   

15.
一种新的双予群PSO算法   总被引:1,自引:1,他引:1  
焦巍  刘光斌 《计算机工程》2009,35(16):173-174
提出一种新的双子群粒子群优化(PSO)算法。充分利用搜索域内的有效信息,通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围。在不增加粒子群规模的前提下,提高解高维最优化问题的精度,降低粒子群优化算法陷入局部最优点的风险。3种典型函数的仿真结果及与2种经典PSO算法的比较结果验证了该算法的有效性。  相似文献   

16.
一种新的粒子群优化算法   总被引:1,自引:2,他引:1  
代军  李国  徐晨  陶艾 《计算机工程》2010,36(9):192-194
针对传统粒子群优化算法容易早熟、收敛精度低等缺点,提出一种改进方案,使用随机惯性权重,在每一次迭代中,对可能陷入局部极值的粒子进行有效的随机初始化。通过对7个经典测试函数的数值仿真实验证明,该新算法能提高粒子群优化算法的寻优能力,并在维数较高时也能获得较好的优化效果。  相似文献   

17.
基于混合粒子群算法的移动机器人路径规划   总被引:1,自引:0,他引:1  
为了确定复杂环境中移动机器人最优轨迹,提出了一种混合粒子群优化算法(IPSO-GOP).首先对粒子群优化算法进行改进,在算法运行的各个阶段对惯性权重进行自适应调整来增强粒子的搜索能力,并采用混沌变量对粒子进行扰动以提高收敛速度;其次,为了提高算法寻优能力,摆脱局部极小值并增加种群的多样性,引入遗传算法继承的多重交叉和变...  相似文献   

18.
分层粒子群优化算法   总被引:1,自引:2,他引:1       下载免费PDF全文
马翠  周先东  杨大地 《计算机工程》2009,35(20):194-196
针对粒子群优化算法存在进化后期局部搜索能力不强、收敛速度变慢的问题,提出一种分层粒子群优化算法。利用标准粒子群优化算法在整个搜索空间内进行全局搜索,由全局搜索获得的较优个体产生局部搜索区域,在局部区域内进行进一步搜索。为避免陷入局部最优,采用动态调整局部搜索区域的策略,保持算法的全局收敛性。通过典型测试函数计算表明,该算法的收敛速度和局部搜索能力有明显改善。  相似文献   

19.
粒子群优化算法的改进   总被引:1,自引:1,他引:1       下载免费PDF全文
针对粒子群优化算法搜索精度不高、对高维函数优化性能不佳的问题,提出一种改进的粒子群优化算法。以递增方式对粒子进行释放增强可利用的种群信息,通过释放粒子引导极值变化加强算法的运算效率。实验结果表明,与其他算法相比,改进算法具有更强的寻优能力和搜索精度,且适于高维复杂函数的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号