共查询到19条相似文献,搜索用时 93 毫秒
1.
有等式约束优化问题的粒子群优化算法 总被引:3,自引:5,他引:3
目前大多数粒子群优化算法针对无约束优化问题或不等式约束优化问题,求解有等式约束优化问题的方法是把每个等式约束变成两个不等式约束,这种方法的缺点是在进化过程中粒子位置很难满足等式约束条件,影响了收敛速度和解的精度。提出了求解有等式约束优化问题的两种新粒子群优化算法,数值试验结果表明,算法是有效的。 相似文献
2.
3.
4.
5.
6.
粒子群优化算法按照认知部分和社会部分被区分为5种模型(完全模型、自认知模型、社交模型、非自身社交模型和非自身完全模型)。为了明确5种粒子群优化模型的效率,选用进化计算领域中常用的5种基准函数,分别对5种粒子群优化算法模型设置不同的参数,分析了它们在求解5种基准函数时的成功率、平均函数求值数、最佳适应度等。结果表明:PSO完全模型和非自身完全模型使用收缩系数K在某些参数设置下求解高维问题时即搜索问题的解时效率较高,社交模型和非自身社交模型在一些参数设置下求解Schaffer函数等二维问题的效率最好。 相似文献
7.
针对图像匹配中速度慢、抗噪性差等问题,提出一种基于灰色理论和粒子群优化的快速图像匹配算法——GPSO算法。该算法首先通过粒子群初始化,获得待匹配的多个初始位置和更新速度;然后,利用模板图和当前搜索位置子图的直方图信息,形成参考序列和比较序列,设计基于两类序列间灰色关联度的适应度函数。在此基础上,各粒子根据个体经验和社会经验,利用群体智能的高效并行寻优能力,逐代逼近最佳匹配位置。实验显示,本算法在保证了一定匹配精度的情况下,明显提高了匹配速度和鲁棒性。 相似文献
8.
在研究标准粒子群算法和遗传算法的基础上,介绍一种加入遗传选择,交叉算子以及变异算子的扩展算法,以提高粒子群算法摆脱局部极值点的能力,并且算法具有较快的收敛能力。 相似文献
9.
阈值法分割图像时只利用图像的灰度信息,具有直观、实现简单的特点。针对传统的粒子群优化算法(Particle Swarm Optimization,PSO)分割图像易陷入局部最优的缺点,提出一种基于改进粒子群优化算法的Otsu图像阈值分割方法。以Otsu算法的类间方差作为适应度函数,在每次迭代中选取适应度较好的粒子同时加入新的粒子,以提高粒子多样性。实验表明,与Otsu算法和PSO算法相比,改进的粒子群优化算法不仅加快了收敛速度和运算速度,而且提高了图像分割的准确率。 相似文献
10.
一种遗传算法与粒子群优化的多子群分层混合算法 总被引:3,自引:0,他引:3
针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点, 本文从种群个体组织结构上着手, 进行优势互补, 提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization, HGA–PSO). 算法采用分层结构, 底层由一系列的遗传算法子群组成, 贡献算法的全局搜索能力; 上层是由每个子群的最优个体组成的精英群, 采用钳制了初始速度的粒子群算法进行精确局部搜索. 文中分析论证了HGA–PSO算法具有全局收敛性, 并采用7个典型高维Benchmark函数进行测试, 实验结果显示该算法的优化性能显著优于其他测试算法. 相似文献
11.
12.
13.
14.
15.
一种新的双予群PSO算法 总被引:1,自引:1,他引:1
提出一种新的双子群粒子群优化(PSO)算法。充分利用搜索域内的有效信息,通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围。在不增加粒子群规模的前提下,提高解高维最优化问题的精度,降低粒子群优化算法陷入局部最优点的风险。3种典型函数的仿真结果及与2种经典PSO算法的比较结果验证了该算法的有效性。 相似文献
16.
17.
基于混合粒子群算法的移动机器人路径规划 总被引:1,自引:0,他引:1
为了确定复杂环境中移动机器人最优轨迹,提出了一种混合粒子群优化算法(IPSO-GOP).首先对粒子群优化算法进行改进,在算法运行的各个阶段对惯性权重进行自适应调整来增强粒子的搜索能力,并采用混沌变量对粒子进行扰动以提高收敛速度;其次,为了提高算法寻优能力,摆脱局部极小值并增加种群的多样性,引入遗传算法继承的多重交叉和变... 相似文献
18.