首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
对层板复合材料在拉伸-拉伸疲劳载荷作用下的初始静刚度、初始静强度、剩余刚度、剩余强度、疲劳寿命进行了实验研究,取得了大量的有意义的实验数据,分析了层板复合材料的初始静刚度、初始静强度和疲劳寿命的概率分布,讨论了层板复合材料在不同应力水平下剩余刚度随疲劳循环周次的衰减变化及损伤破坏的形式,得到了一些有意义的结论。  相似文献   

2.
层板复合材料疲劳性能的唯象学研究模型及其应用   总被引:1,自引:0,他引:1  
介绍了层板复合材料在疲劳载荷作用下剩余强度衰退模型、剩余刚度衰退模型及剩余强度和剩余刚度的关系模型,给出了模型的实验验证实例,讨论了这些模型的应用范围及需要进一步研究的问题。  相似文献   

3.
介绍了层板复合材料在疲劳载荷作用下的剩余强度衰退模型、剩余刚度衰退模型及剩余强度和剩余刚度的关系模型 ,给出了模型的实验验证实例 ,讨论了这些模型的应用范围及需要进一步研究的问题  相似文献   

4.
应用可靠性分析的方法,导出了层板复合材料在疲劳载荷作用下的疲劳剩余寿命的预报模型。该模型已用典型层板复合材料在恒幅疲劳载荷作用下的实验数据进行了验证,实验结果表明,理论预测结果与实验值的接近程度是合理的。  相似文献   

5.
层板复合材料的疲劳剩余寿命预报模型   总被引:3,自引:0,他引:3  
应用可靠性分析的方法 ,导出了层板复合材料在疲劳载荷作用下的疲劳剩余寿命的预报模型。该模型已用典型层板复合材料在恒幅疲劳载荷作用下的实验数据进行了验证。实验结果表明 ,理论预测结果与实验值的接近程度是合理的  相似文献   

6.
复合材料层板在疲劳下的剩余刚度衰退理论   总被引:1,自引:0,他引:1  
本文根据实验规律,将复合材料层板的性能参数视成随机变量,提出了一个剩余刚度的衰退理论。建立了剩余刚度分布函数公式,给出了剩余刚度和剩余强度以及寿命的关系,并用试验进行了验证。  相似文献   

7.
基于预测单向复合材料纵向拉伸强度的随机核模型,引入纤维单丝剩余强度二参数Weibull模型及纤维单丝与基体界面剩余强度模型,研究建立了单向复合材料纵向拉-拉疲劳寿命及剩余强度的预测模型。对经过一定次数拉-拉疲劳载荷循环后的纤维束抽取其纤维单丝进行剩余强度拉伸试验,建立了纤维单丝剩余强度的二参数Weibull模型,测试单向碳/碳(C/C)复合材料的纤维与基体界面强度。通过单向C/C复合材料算例分析表明,92.5%、90.6%和87.5%应力水平下对数预测寿命与对数试验寿命比值分别为0.79、1.00和1.11,表明所建立的寿命预测模型用于预测单向C/C复合材料疲劳寿命是可行的;纵向拉伸剩余强度预测值与试验值误差在10%以内,吻合较好,表明所提出的剩余强度预测模型具有较高的精度。  相似文献   

8.
碳/碳复合材料疲劳损伤失效试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对单向碳/碳复合材料纵向拉-拉疲劳特性及面内剪切拉-拉疲劳特性进行了试验研究; 对三维四向编织碳/碳复合材料的纵向拉-拉疲劳特性及纤维束-基体界面剩余强度进行了试验研究。使用最小二乘法拟合得到了单向碳/碳复合材料纵向及面内剪切拉-拉疲劳加载下的剩余刚度退化模型及剩余强度退化模型, 建立了纤维束-基体界面剩余强度模型。结果显示: 单向碳/碳复合材料在87.5%应力水平的疲劳载荷下刚度退化最大只有8.8%左右, 在70.0%应力水平的疲劳载荷下, 面内剪切刚度退化最大可达30%左右; 三维四向编织碳/碳复合材料疲劳加载后强度及刚度均得到了提高; 随着疲劳循环加载数的增加, 三维四向编织碳/碳复合材料中纤维束-基体界面强度逐渐减弱。   相似文献   

9.
根据复合材料的疲劳损伤机理,重新定义了疲劳损伤因子.根据这个疲劳损伤因子,提出了一种考虑纤维的含量和温度影响的单向纤维增强复合材料剩余刚度和剩余强度的模型;进而根据室温剩余刚度-剩余强度关联模型引入温度修正参数得到了一定温度下的剩余刚度-剩余强度关联模型,并进一步得到了与剩余刚度相关的剩余强度模型.于是,在建立剩余强度...  相似文献   

10.
复合材料层压板剩余刚度剩余强度关联模型   总被引:4,自引:1,他引:3       下载免费PDF全文
基于剩余强度和剩余刚度取决于同一损伤状态的假设,给出了基于剩余刚度的损伤定义和基于剩余强度的损伤定义之间的关系,建立了剩余刚度剩余强度关联模型。用3种不同铺层形式的层压板试验数据对本文中提出的剩余刚度模型及剩余强度模型进行了验证,结果表明:本文中提出的剩余刚度和剩余强度模型能很好地描述复合材料层压板疲劳过程中的剩余刚度和剩余强度退化规律;通过关联模型,可以在已知剩余刚度退化规律的前提下,用少量剩余强度试验确定剩余强度退化规律;与剩余刚度关联的剩余强度模型中的参数可以被认为是材料常数。   相似文献   

11.
This paper is to simulate the fatigue damage evolution in composite laminates and predict fatigue life of the laminates with different lay-up sequences on the basis of the fatigue characteristics of longitudinal, transverse and in-plane shear directions by finite element analysis (FEA) method. In FEA model, considering the scatter of the material’s properties, each element was assigned with different material’s properties. The stress analysis was carried out in MSC Patran/Nastran, and a modified Hashin’s failure criterion was applied to predict the failure of the elements. A new stiffness degradation model was proposed and applied in the simulation and then a strength degradation model was deduced, which is coupled with the presented stiffness degradation model. The reduced or discounted elastic constants were determined based on the failure mechanism of the laminates and the restrictive conditions of orthotropic property. The fatigue behavior and fatigue life of six kinds of E-glass/epoxy composite laminates with different lay-up sequences were experimentally studied, and the S–N curves and stiffness degradation models in longitudinal, transverse and in-plane shear direction were obtained. These fatigue data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. The simulation results, including the fatigue life predicted and the residual stiffness, were coincident with the experimental results well except for the quasi-isotropic laminate for the lack of consideration of the out-of-plane fatigue character in the simulation.  相似文献   

12.
Fatigue failure is one of the most important failure types of fiber-reinforced composites. In this paper, a new fatigue failure theory for multidirectional fiber-reinforced composite laminates with an arbitrary stacking sequence is developed, by combining nonlinear residual strength and residual stiffness models with the recently improved Puck’s failure theory which includes the in situ strength effect. This fatigue theory can predict the fatigue life, residual strength and residual failure envelope of fiber-reinforced composite laminates under multidirectional loadings. For these predictions it is necessary to recalculate the fatigue lives of laminae after each cycle since the stresses in the laminae change due to stiffness degradation. It is also necessary to account for the nonlinear accumulation of damage at the new stress level in the laminae resulting from stiffness degradation. This is achieved by using the concept of equivalent cycle. The theoretical predictions are in good agreement with available experimental results.  相似文献   

13.
The research dealt with the relation between damage and tension–tension fatigue residual strength (FRS) in a quasi-isotropic carbon fibre reinforced epoxy resin laminate. The work was organized in two phases: during the first one, composite laminates were damaged by means of an out-of-plane quasi-static load that was supposed to simulate a low velocity impact; in the second phase, fatigue tests were performed on damaged and undamaged specimens obtained from the original composite laminates. During the quasi-static transverse loading phase, damage progression was monitored by means of acoustic emission (AE) technique. The measurement of the strain energy accumulated in the specimens and of the acoustic energy released by fracture events made it possible to estimate the amount of induced damage and evaluate the quasi-static residual tensile strength of the specimens. A probabilistic failure analysis of the fatigue data, reduced by the relative residual strength values, made it possible to relate the FRS of damaged specimens with the fatigue strength of undamaged ones.  相似文献   

14.
A statistical approach is proposed to evaluate the residual strength and life of unidirectional and angle-ply composite laminates subjected to in-plane tensile cyclic stresses. The method is based on the extension of previous static failure criteria describing independently the fibre failure and matrix failure modes, combined with the statistical nature of fatigue failure of fibre-reinforced composites. The static and fatigue strengths of composite laminates at any off-axis angle are evaluated using the fatigue failure functions for the three principal failure modes, which are determined from the fatigue behaviour of unidirectional composites subjected to longitudinal and transverse tension as well as in-plane shear stresses. The evaluations of the fatigue strength of unidirectional E-glass/epoxy laminates under off-axis fatigue loading and angle-ply S-glass/epoxy laminates under in-plane fatigue loading show good agreement between theoretical predictions and experimental results.  相似文献   

15.
As carbon fibers are electrical conductors, the measurement of the electrical resistance appears to be a valuable technique for the in situ detection of various types of damage in carbon fiber reinforced polymers (CFRP) laminates. In such cases, carbon fibers are both the reinforcement and the sensor to detect damage in CFRP laminates. The damage-detecting method of CFRP laminates by electrical resistance measurement that are investigated in this study is made possible by attaching electrodes on the surface of the CFRP structures without special manufacturing.

In this paper, we investigate the electrical resistance change as a damage parameter of fatigue damage such as the degradation of residual strength and stiffness. The measured stiffness and electrical resistance change during fatigue tests showed a very similar trend of change. This is because cumulative fatigue damage is represented by the degradation of residual stiffness; these damages also cause change in electrical resistance. Thus, we can use this change in electrical resistance as a damage parameter. We also predict the future damage of composite laminates in fatigue loading from electrical resistance damage model by following a stiffness degradation model. Electrical resistance gradually increased as the stiffness reduced, and showed a very abrupt change when final fatigue failure was imminent. The predicted value showed good agreement with the experimental data except in the final stage, where stiffness and electrical resistance changed abruptly.  相似文献   


16.
The stiffness reduction and evolution of microstructural damage of a unidirectional silicon carbide fiber reinforced titanium matrix composite under tension-tension fatigue were investigated. Tests were conducted under load control with maximum applied stresses ranging from 750 to 945 MPa. The crack density of the interfacial reaction layer and matrix, matrix crack length, and interfacial debonding length as a function of fatigue cycles and applied stress levels were measured. The results showed that the composites exhibited an initial regime with slow stiffness reduction, followed by a rapid stiffness drop regime and a plateau regime with minimal change in stiffness for the applied stress levels used in this study. The residual stiffness at N = 106 cycles is independent of the applied stress levels, while the microstructural damage accumulation varied with the applied stresses. A partial crack shear-lag model was also developed to predict the residual stiffness as a function of fatigue damage accumulation. Analytical simulation indicated that the profile of the stiffness reduction curves was dominated by the matrix crack density, while the extent of stiffness reduction was dominated by the matrix crack length.  相似文献   

17.
A new unified fatigue life model based on the energy method is developed for unidirectional polymer composite laminates subjected to constant amplitude, tension–tension or compression–compression fatigue loading. This new fatigue model is based on static failure criterion presented by Sandhu and substantially is normalized to static strength in fiber, matrix and shear directions. The proposed model is capable of predicting fatigue life of unidirectional composite laminates over the range of positive stress ratios in various fiber orientation angles. By using this new model all data points obtained from various stress ratios and fiber orientation angles are collapsed into a single curve.

The new fatigue model is verified by applying it to different experimental data provided by other researchers. The obtained results by the new fatigue model are in good agreements with the experimental data of carbon/epoxy and E-glass/epoxy of unidirectional plies.  相似文献   


18.
Modelling of fatigue damage progression and life of CFRP laminates   总被引:1,自引:0,他引:1  
A progressive fatigue damage model has been developed for predicting damage accumulation and life of carbon fibre‐reinforced plastics (CFRP) laminates with arbitrary geometry and stacking sequence subjected to constant amplitude cyclic loading. The model comprises the components of stress analysis, fatigue failure analysis and fatigue material property degradation. Stress analysis of the composite laminate was performed by creating a three‐dimensional finite element model in the ANSYS FE code. Fatigue failure analysis was performed by using a set of Hashin‐type failure criteria and the Ye‐delamination criterion. Two types of material property degradations on the basis of element stiffness and strength were applied: a sudden degradation because of sudden failure detected by the fatigue failure criteria and a gradual degradation because of the nature of cyclic loading, which is driven by the increased number of cycles. The gradual degradation of the composite material was modelled by using functions relating the residual stiffness and residual strength of the laminate to the number of cycles. All model components have been programmed in the ANSYS FE code in order to create a user‐friendly macro‐routine. The model has been applied in two different quasi‐isotropic CFRP laminates subjected to tension–compression (T–C) fatigue and the predictions of fatigue life and damage accumulation as a function of the number of cycles were compared with experimental data available in the literature. A very good agreement was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号