首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用氯化锌浸渍法制备柚子皮活性炭,研究了该活性炭对染料废水中刚果红的吸附性能。结果表明:在pH=11时,吸附效果最好;投加量越大,单位质量活性炭对刚果红的吸附量越小;吸附量随溶液初始浓度的升高而增加;刚果红的吸附在90 min内基本可以达到平衡,柚子皮活性炭对刚果红的吸附是物理性质的、自发的;等温吸附可采用Langmuir等温模型拟合且相关性显著;动力学吸附过程很好地遵循准二级动力学模型,刚果红在柚子皮活性炭孔隙中的扩散不是唯一的速率控制步骤,可能有多个步骤共同控制该吸附过程。  相似文献   

2.
活性炭吸附丙酮及其脱附规律的实验研究   总被引:4,自引:1,他引:3  
为认识吸附剂物质脱附规律,实验测试了在不同真空度、温度、吸附入口浓度和不同脱附初始浓度下活性炭C40/4对丙酮吸附及脱附的性能曲线,实验得出:吸附性能曲线斜率受进口浓度、操作压力的影响;脱附性能曲线斜率受脱附出口初始与脱附平衡浓度差、操作压力的影响;而温度、床层高度、吸附空塔速度只是让穿透曲线左右平移;脱附时真空度越大,脱附气体浓度越大,但脱附速度相应变小;在真空下脱附的脱附柱的出口浓度达到初始脱附浓度的一半时,脱附速度大大减缓,并且由于吸附剂微孔内的毛细管现象作用,在低于0.06~0.07MPa时,脱附出口浓度开始出现较长时间的反弹和维持,然后才缓慢下降;各种因素所引起的操作温度变化不大,对吸附和脱附的速度影响不大。  相似文献   

3.
用硫酸改性污泥活性炭考察硫酸浓度及改性时间对活性炭吸附容量的影响,在最佳改性条件下研究了振荡时间、初始浓度、pH值对活性炭吸附Cr6+的影响.并对改性前后污泥活性炭吸附Cr6+的等温吸附特性、动力学模型进行分析.结果表明:采用体积比为1∶5的硫酸,改性2 h,活性炭对Cr6+吸附容量达9.44 mg/g,较原污泥活性炭提高了53%;改性前后污泥活性炭对Cr6+的吸附均符合Langmuir等温吸附模型和准二级动力学模型.  相似文献   

4.
活性炭的改性及吸附性能   总被引:1,自引:0,他引:1  
亚甲基蓝属于噻嗪类染料,脱色较难.分别采用普通浸渍法,超声波浸渍法,将硫酸镁负载到活性炭上,以增强其对亚甲基蓝的脱色和吸附效果.结果表明,用超声浸渍法处理后的活性炭的脱色效果最佳,普通浸渍法次之,它们的脱色率分别达到62.81%和43.51%,未改性活性炭的脱色率仅为33.29%.实验中还发现,超声波改性有助于提高活性炭的吸附容量和吸附速率,改性前后活性炭均遵循Langmuir方程.  相似文献   

5.
采用正交试验,研究了颗粒活性炭(GAC)微波再生的最佳条件,考察了再生后GAC的孔径与表面官能团的变化.以十二烷基苯磺酸钠和腐植酸为吸附质,对比了GAC再生前后的吸附效果.结果表明:再生影响因素依次为微波功率、微波时间、载气速率,最佳条件为微波功率730,W,微波时间180,s,载气速率0.54,L/min;随着再生次数的增加,碘值减小,亚甲基蓝值增加;以N2为载气,再生后GAC的碱性官能团数量增多.再生GAC对有机物的吸附容量减少.  相似文献   

6.
表面改性活性炭对CO2的吸附性能   总被引:9,自引:0,他引:9  
研究了用H2O2,HNO3加醋酸铜溶液进行表面改性后的活性炭对CO2的吸附性能,分析了改性前后的活性炭的表面化学性质,测定了273K下的吸附等温线,用D-A方程对吸附等温线进行了很好的拟合,探讨了表面改性对活性炭表面化学性质的影响及其表面化党性民吸附性能之间的关系。  相似文献   

7.
使用活性炭纤维(ACF)为吸附剂,以间苯二酚为对象进行模拟含酚废水净化处理.通过间歇式静态吸附实验,测定室温下间苯二酚在ACF上的吸附等温平衡线以及动力学数据.结果表明:在较低溶液质量浓度下,低温对间苯二酚的吸附更有利,当溶液质量浓度较大,温度对于其在ACF上的吸附影响减小,饱和吸附容量主要受溶液中间苯二酚平衡质量浓度影响;吸附平衡关系主要服从Langmuir模型,表明该过程主要为间苯二酚在ACF上的物理吸附过程.动力学数据表明:间苯二酚在ACF上的初始吸附速率较大,随着ACF表面吸附活性位的减少,吸附速率迅速下降,大约在120 min后基本达到吸附平衡,吸附过程主要符合2阶动力学方程.填充床动态吸附实验表明ACF具有较好的流体通过性能,吸附处理能力较强.吸附达饱和的ACF利用Na OH溶液热法再生,再生后吸附性能保持良好.  相似文献   

8.
本文以动态实验和辅助测试为基础,探讨浊度对活性炭吸附性能影响的实质,并对活性炭滤柱的过滤吸附作用进行了分析研究,从而得出沉淀池出水在一定条件下可直接进入活性炭滤池的结论。  相似文献   

9.
磁性活性炭的制备及其吸附性能   总被引:1,自引:0,他引:1  
为改善粉末活性炭的可分离性,采用化学共沉淀法制备新型磁性活性炭,以亚甲基蓝为目标污染物配制染料废水,对粉末态磁性活性炭对目标污染物的处理效能进行探讨,并与粉末活性炭处理效果进行对比,考察p H、接触时间以及污染物质量浓度对其处理效能的影响.结果表明:合成的粉末态磁性活性炭吸附能力高于粉末活性炭,p H为影响其处理效能的关键因素,偏碱性的p H和适宜的接触时间有利于污染物的去除.当亚甲基蓝初始质量浓度为100 mg/L、磁性活性炭投量为0.4 g/L、p H为9、反应时间为300 min时,亚甲基蓝的去除率达98.9%.亚甲基蓝在磁性活性炭上的吸附过程符合Langmuir吸附等温线和Elovich动力学模型,热力学分析表明,该吸附过程为自发进行的单分子层吸热反应,且以化学吸附为主.该磁性活性炭具有很好的分离性能,在自然重力沉降条件下10 min内沉淀完全,而在外强磁场作用下30 s内可实现快速分离.  相似文献   

10.
以脱硅稻壳残渣为原料制备活性炭,探讨了其对废水中靛蓝的吸附性能,考察了吸附时间、吸附剂用量和pH值等因素对吸附效果的影响.结果表明,靛蓝吸附过程符合Koble-Corrigan吸附等温模型,吸附过程是自发的吸热过程.利用准一级动力学方程、准二级动力学方程及粒子内扩散方程检验了吸附过程的动力学特性,活性炭吸附靛蓝的吸附动力学行为可以用准二级动力学模型描述,表明该吸附属于化学吸附.298 K时,活性炭吸附靛蓝的最大吸附量为1.05 mmol·g-1,对靛蓝有良好的吸附作用,可以作为染料废水处理吸附剂.  相似文献   

11.
研究活性炭对糠醛废水经由双效蒸发回收醋酸钠后的冷凝水中有机物的吸附性能,考察pH值、活性炭的投加量、温度、时间等条件对吸附的影响,利用紫外光谱和COD测定仪对吸附前后的水样进行分析。探讨了吸附热力学机理。结果表明,活性炭对冷凝水中有机物的去除能力受pH值的影响,当pH值为5时,吸附量最大,并随活性炭投加量增加而增大,当100mL水中投加2.0 g活性炭时,吸附后水样的CODCr值为42.64mg/L。该吸附过程较好的符合Freundlich等温模型,自由能变(ΔG)和熵变(ΔS)均小于零,该吸附过程属于放热的物理吸附过程.  相似文献   

12.
为了分离和浓缩煤矿瓦斯中的CH_4,以太西无烟煤为原料、水蒸气为活化介质,研究了在添加剂作用下工艺条件对活性炭孔隙结构及吸附CH_4性能的影响.实验结果表明:影响CH_4吸附量的关键因素是0.6~0.8nm孔的孔容大小,无论工艺条件如何变化,只要能提高该范围的孔容积,活性炭的CH_4吸附量也随之增大.添加NH_4Cl和KNO3时,活化程度(烧失率)、炭化终温、炭化升温速率、活化温度等工艺条件对活性炭的微孔率影响不大,微孔率均在91%左右,但对微孔分布有明显影响,NH_4Cl和KNO3的添加有利于小微孔的生成,特别是有利于孔径0.6~0.8nm孔隙的形成,能有效提高活性炭CH_4吸附量的增大.活性炭的烧失率过低或过高都不利于0.6~0.8nm孔隙的形成,适宜的烧失率为30%~40%;较高的炭化升温速率不利于0.6~0.8nm之间孔容积的提高,适宜的炭化升温速率为3~5℃/min;过低或过高的炭化终温不利于0.6~0.8nm之间孔容积的提高,适宜的炭化终温为650℃;总体来说,活化温度的影响相对较小,适宜的活化温度为880℃.在最优条件下制备的活性炭CH_4吸附量达到24.31mL/g.  相似文献   

13.
选用氧化镁改性活性炭(MgO—AC)为新型吸附剂,用于去除水溶液中的氟离子.系统地研究了反应时间、吸附剂最佳投加量、pH、温度等因素对吸附剂除氟性能的影响情况.反应系统达到吸附平衡的时间为180min.吸附剂最佳投加量为2.8g/L.pH值是影响吸附过程的重要因素之一,本研究最佳反应pH范围为6.0—8.0.吸附等温线研究发现MgO—AC除氟剂吸附等温线方程均符合Langmuir吸附等温线模型,且吸附量随着温度的升高而升高.吸附动力学研究发现动力学数据较好的的符合伪二级动力学模型.本研究对MgO—AC除氟的机理进行了初步探讨.廉价以及较高的吸附性能等优点表明MgO—AC是一种有实际应用潜力除氟材料.  相似文献   

14.
15.
微波改性活性炭对甲苯吸附性能的实验研究   总被引:2,自引:0,他引:2  
利用微波对活性炭进行改性,并测定了改性前后不同种类活性炭对甲苯的吸附性能、比表面积、碘吸附值以及表面酸碱官能团含量.结果表明,随着改性温度升高,碘吸附值逐渐提高,表面碱性官能团含量也相应增加.改性温度为850℃时活性炭吸附甲苯性能最高,650℃与450℃改性后活性炭吸附甲苯性的性能相差不大.扫描电镜分析显示微波改性使活性炭孔道更加通畅,有利于提高吸附甲苯的能力,但温度升高同样存在炭骨架收缩,孔道变窄的弊端.通过实验数据并结合扫描电镜结果分析,实验认为活性炭吸附甲苯包括物理吸附和化学吸附两种机理,低温改性时主要提高物理吸附性能,高温则主要提高化学吸附性能.  相似文献   

16.
利用化学修饰法合成酚羟基修饰吸附树脂LM-6,通过批量吸附实验考察LM-6对2-萘酚的吸附热力学及动力学行为。结果表明,在实验条件下,LM-6对2-萘酚的吸附数据符合Freundlich吸附等温方程且为优惠吸附,吸附能力随着温度的升高而增加。吸附自由能变G<0,表明吸附过程是自发的过程;S<0,表明吸附过程中熵增加。吸附平衡时间为10 h,吸附动力学数据符合拟二级动力学方程和颗粒内扩散模型。  相似文献   

17.
为了提高活性炭的吸附性能,以硝酸镁和活性炭为原料,采用等体积浸渍高温焙烧法制备了氧化镁改性活性炭材料(MgO-GAC)并采用扫描电镜对其形态结构进行分析,考察了pH、温度、吸附时间对复合材料吸附废水中低浓度活性红染料的影响。结果表明,硝酸镁3.5mol/L、焙烧温度600℃、焙烧时间2h,MgO-GAC的碘吸附值为960.42mg·g-1。扫描电镜(SEM)照片显示,未改性颗粒活性炭表面微孔直径约3μm,改性MgO-GAC复合材料表面的微孔大小均匀,孔径约6-7μm,其表面负载着大量的细小圆形颗粒,高温焙烧对颗粒活性炭有扩孔作用,且可以使硝酸镁转化为多孔氧化镁,并有效负载到颗粒活性炭表面。MgO-GAC复合材料吸附活性红X-3B染料的最佳条件为:投加量为0.1 g,温度为30℃、pH值为6,活性红染料的去除率可达92.5%。本改性颗粒活性炭的制备方法是可行的,高温扩孔和负载的多孔氧化镁能够可以增大颗粒活性炭的表面积,从而提高了活性红染料的吸附效果。  相似文献   

18.
经不同质量分数的酸、处理时间、焙烧温度等条件对活性炭进行改性,利用静态法研究了改性活性炭对噻吩的吸附脱硫性能。通过BET表征,对三种活性炭吸附剂进行比表面积分析。实验结果表明:经质量分数为50%的HNO3,100℃,6h处理的活性炭的脱硫性能最优(约71.0%),惰性气氛下高温焙烧活性炭的脱硫率比未处理活性炭的脱硫率普遍提高,增幅约20%。说明物理微观结构不是影响脱硫率变化的主要因素。  相似文献   

19.
以商品活性炭为原料、碳酸钾和助剂为复合添加剂,浸渍过程采用超声波处理,进行再活化、酸洗、水洗.通过测定所制备活性炭的碘值、亚甲蓝值及氮气吸附、脱附等温线,研究了添加剂和超声波处理对活性炭碘值、亚甲蓝值及中孔结构的影响.结果表明:复合添加剂有利于提高活性炭碘值和亚甲蓝值;在浸渍过程中采用超声波处理,相对于常规浸渍,更加有利于提高活性炭吸附性能和中孔率,但是活性炭的碘值、亚甲蓝值和中孔率随着超声波功率和时间的增加而降低.试验范围内,超声波功率40 W,处理时间50 min时,活性炭的吸附性能及中孔率最高.  相似文献   

20.
利用污水处理厂未消化脱水污泥,采用二氧化锰为催化剂,磷酸为活化剂,通过微波辐照工艺制备了掺锰污泥活性炭,研究了掺锰污泥活性炭对酸性湖蓝A的吸附效果。实验结果表明,掺锰污泥活性炭对初始质量浓度为30 mg/L的酸性湖蓝A的最佳吸附条件为:吸附时间60 m in,掺锰污泥活性炭加入量4 g/L,溶液pH值7,在此条件下,酸性湖蓝A吸附率达99.4%。对不同浓度的酸性湖蓝A进行了动力学研究,由线性相关系数可知:伪二级动力学方程能很好地描述掺锰污泥活性炭对酸性湖蓝A的吸附过程。说明伪二级动力学模型包含吸附的所有过程,能够更真实地反映酸性湖蓝A在掺锰污泥活性炭上的吸附机理。实验结果为污水处理厂污泥的资源化利用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号