首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
激光超声表面缺陷检测的实验方法   总被引:5,自引:0,他引:5  
提出了一种非接触式、全光学激光超声检测的实验方法。利用Nd:YAG脉冲激光器、He-Ne激光器和平衡接收器构建一套基于光束偏转法的光差分检测系统,测量了表面带缺陷Al样品的声表面波(SAWs)。通过实验获得了SAWs经过表面缺陷时产生的反射回波及透射波形的特征,说明了线光源产生的超声波非常适合材料表面缺陷的检测。  相似文献   

2.
相移迁移法在激光超声合成孔径聚焦技术中的应用   总被引:1,自引:0,他引:1  
通过分析脉冲源激光辐照于工件表面激发的多模式、宽带超声体波信号并结合合成孔径聚焦技术(SAFT),实现了对工件内部微小缺陷的检测、定位和成像。首先基于有限元仿真模拟了激光激发超声波在含缺陷样品中的传播过程,编写了基于相移迁移法(PSM)的SAFT成像算法,然后在实验中使用激光在含缺陷样品表面激发超声波,使用激光测振仪探测超声波,并基于已有算法和探测结果对样品内缺陷进行了检测和定位,以验证算法的正确性。有限元仿真以及实验结果均表明,将激光超声技术与频域SAFT-PSM结合,能够有效地对微小缺陷进行检测和定位,且其图像重构速度快于时域SAFT,可为激光超声无损检测提供更快速的实时技术方案。  相似文献   

3.
利用激光超声技术,研究生产中常见的弧形表面缺陷的无损检测方法。首先基于热弹机制建立弧形表面缺陷检测的有限元仿真模型,探究不同尺寸参数的缺陷对表面波反射回波及透射波的影响;然后采用经验模态分解法对带有缺陷信息的反射回波和透射波信号进行了分解,提取相应特征频率的信号进行叠加;最后根据超声特征参数的变化规律,建立了缺陷深度的预测模型。结果表明,利用透射波特征参数计算得到的缺陷深度与实际缺陷深度相比的最大误差仅为0.6%,因此提出的预测模型具有较高的精度,可用于弧形表面缺陷的现场检测。  相似文献   

4.
郑伟伟  马世榜 《激光与红外》2022,52(11):1622-1628
为了有效评估出工件内部缺陷的深度,提出了脉冲激光激励和电磁超声换能器接收的非接触式检测方法。分析了超声波的烧蚀激励原理,体波作用于缺陷后的衍射现象,以及电磁超声的接收过程。依据横波衍射理论,当电磁超声换能器处于缺陷正上方时,衍射信号的渡越时间将取得最小值,基于此推导了缺陷深度计算公式并讨论了检测盲区。搭建了工件内部缺陷的激光-电磁超声检测系统,先后测量了内部含有圆孔和不同倾角裂纹的工件试样。在固定激励点的前提下,移动电磁超声换能器,观察信号渡越时间的变化规律,以及分析衍射横波的相位特征。提取衍射横波的最小渡越时间并求得缺陷深度值,其相对误差均在±3之内。实验结果表明,激光-电磁超声检测方法能够有效测量出缺陷深度,可作为接触式压电超声检测技术的一种补充方案,应用于无法满足耦合条件的场合。  相似文献   

5.
激光-EMAT法非接触式无损检测金属内部缺陷研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了实现金属材料内部缺陷的非接触式无损检测,采用激光-电磁超声方法进行了理论分析和实验验证研究,取得了钢坯试样中深度为40mm、尺寸为Φ3mm×30mm孔洞人工伤的检测数据,检测结果与实际孔洞位置之间的测量误差约为5%。结果表明,激光-电磁超声技术适用于金属材料内部缺陷的非接触式无损检测。  相似文献   

6.
华浩然  袁丽华  邬冠华  吴伟 《红外与激光工程》2016,45(2):204007-0204007(6)
脉冲红外热波检测是一种新兴的无损检测技术,通常采用反射型激励方式。针对反射法缺陷深度检测误差大的不足,系统分析了透射法的红外脉冲热波定量检测缺陷深度。通过分析材料在脉冲热激励下的一维热传导模型,探讨了缺陷深度的红外测量原理。利用表面温度一阶微分峰值时间法建立特征时间与缺陷深度的关系,实现对缺陷深度的定量检测。以PVC板人工楔形槽缺陷为例,采用透射法与反射法对比实验分析缺陷深度的测量误差。结果表明,反射法在对缺陷进行定量计算时需要选取参考区域,而透射法对数据的处理不依赖参考区域,避免参考区域所带来的误差。透射法直接加热缺陷面,响应时间短,通过求解缺陷处的特征时间计算缺陷深度,检测精度得到大幅度提高。  相似文献   

7.
孙强  戴鹭楠  应恺宁  倪辰荫 《红外与激光工程》2022,51(2):20210810-1-20210810-13
激光超声检测技术由于其非接触、高灵敏度和高空间分辨率特点,在无损检测领域具有广阔的应用前景。但其在高空间分辨率下进行大面积扫查需要花费较长的扫描时间,实用性受到制约。针对上述问题,文中提出使用二分搜索方法提高了检测速度,并使用压缩感知算法将所探测到的激光超声信号表示为小波基的线性加权组合,最终从二分搜索获得的较少实测激光超声信号中还原出整个待测范围内的信号。进一步,搭建了内部缺陷的激光超声扫描检测装置,使用脉冲激光实现超声的激光激发,多普勒测振仪实现超声的非接触探测,通过固定激发探测距离移动样品的方式实现了基于二分搜索和压缩感知的激光超声内部缺陷快速检测。文中提出的技术不但具有非接触、高灵敏度和高空间分辨率等激光超声的特点,还能提高检测效率。实验结果表明,在120 mm×30 mm×8 mm的铝板上确定缺陷位置需6 min,相比于逐点扫查需要14 min,缩短了体内缺陷定位所需要时间。  相似文献   

8.
《红外技术》2016,(7):602-606
太赫兹波对很多介电材料和非极性的液体具有透射性且THz波辐射的光子能量低,近年来在无损检测领域得到了较快的发展和应用。基于透射式THz-TDS系统在室温下对包含不同深度缺陷信息的车载气瓶玻璃纤维增强复合材料检测,获得了0.2~1.8 THz范围内样品的时域波形,分析其峰峰值、最大值、延迟时间、折射率和吸收系数,结果表明,随着样品缺陷深度的增加,峰峰值、最大值和延迟时间都有明显的变化规律,同时样品的折射率和吸收系数也不同。可以通过分析时域波形的变化以及折射率和吸收系数的变化,获得缺陷的深度信息。  相似文献   

9.
基于激光超声表面波的模具微裂纹无损检测的研究   总被引:1,自引:0,他引:1  
在现代工业的生产中,模具质地的好坏直接关系到所生产的产品质量.为了获取模具质地的信息,将声表面波与激光超声检测技术相结合,利用声表面波在介质深度不同的表面层传播时,振幅随深度的增加迅速衰减,提出了一种新的模具无损检测方法.由于激光源可以聚焦成点光源(或线光源),使得所获得的波形能够对小和薄的模具进行有效的检测,可以扩展至传统的检测方法的检测盲区内.通过实验分析知,其对材料性能表征和对材料表面和亚表面微小缺陷高度敏感,非常适用于微缺陷的无损检测.  相似文献   

10.
多年来,工业超声波无损检测技术是应用一个耦会介质由压电换能器将产生的超声信号耦合到测试样品表面并得到回波,通过传感器对这些返回信号的强度、频率和时限的测量而获取测试样品的内部缺陷参数。而采用激光耦会超声波检测,无需耦会介质,也不需要精确地控制表面和换能器之间的角度(因为测试样品的表面可起换能器的作用),可以进行小于10μm空间分辨率的更快速和远距离非接触(无损)超声波检测,且操作简便,较之传统的工业超声波无损检测方法,激光检测技术更具有优越性。一束聚焦的激光脉冲能量引入到材料表面引起温度上升并使材…  相似文献   

11.
针对厚钢板内部缺陷的检测问题,利用合成孔径聚焦技术(SAFT)实现了厚钢板样品内部缺陷的定位及成像。移动脉冲激光线源在样品内激发超声纵波,利用激光测振仪在固定点探测得到超声时域B扫描信号,从时域信号中提取缺陷反射的纵波回波,对样品内部缺陷进行成像。使用有限元方法对该成像过程进行数值模拟,并通过实验对其进行验证,所获得的实验结果与数值计算结果一致。采用这一缺陷成像方法可在缺陷回波信噪比较低的情况下实现缺陷检测,并且过程简便,在激光超声检测领域具有应用价值。  相似文献   

12.
针对激光超声技术难以定量分析、检测金属样品缺陷的问题,根据不同缺陷深度处反射与透射表面波的频率交叉现象,提出了阈值频率,研究了表面缺陷深度与其对应波长的关系。通过小波分解和频谱分析,探讨和分析了反射波和透射波在频谱能量图中的波形分布特征。结果表明:由阈值频率计算的波长与缺陷深度之间的关系(即λ=4 h)与理论数据分析结果吻合良好;并随着缺陷深度的增加,波长也随之表现出线性增加的特性。由此可见,该分析方法达到了预期的效果,为表面缺陷深度的进一步定量表征提供了参考方向。  相似文献   

13.
激光激发瑞利波测量铝合金焊接残余应力   总被引:1,自引:0,他引:1  
石一飞  沈中华  倪晓武  陆建 《中国激光》2008,35(10):1627-1631
根据声弹性原理提出了一种新的测量材料表面焊接应力的激光超声方法.利用Nd:YAG脉冲激光在材料表面激发高频率超声瑞利波,采用非线性激光干涉仪对检测焊接应力的超声瑞利波进行探测.探测点的位置保持不变,通过激发源的扫描来改变激发源和探测点之间的距离,干涉仪探测到一系列超声脉冲波形信号.采用波形相关技术计算相邻超声瑞利波的传播时间延迟,得出瑞利波的传播速度,进而根据声弹性理论计算出相应的应力值.通过激光源在焊缝附近的扫描,得到焊缝周围的应力分布.测量了铝焊接平板表面的残余应力,得到了样品表面的焊接应力分布.实验结果表明,这种方法可以实现样品表面焊接应力的快速扫描测量,使其在材料表面焊接应力分布无损检测领域具有一定的应用价值.  相似文献   

14.
为了突破传统方法对材料表面缺陷深度检测的局限性,提出了一种基于透射式激光热成像的无损检测技术。选用激光源作为激励源,对被测材料的缺陷表面进行加热,加热点选在材料表面缺陷正下方处,激光输出功率为50W,加热时间为1s。在加热过程中,材料背面的温度场由于热流在材料缺陷传导过程中的影响而产生温度差异,故使用红外热像仪对加热过程中材料背面的温度场变化进行记录,并使用无缺陷处A点作为参考点,有缺陷处B点作为考察点,通过分析A、B两点的温度变化情况来对表面缺陷的深度进行特征提取。经过实验验证可知,该方法可以在一定条件下对材料表面的缺陷深度进行检测,当A点温度一定时,B点温度与缺陷深度的最优拟合呈指数关系,随着缺陷深度的增长,背面B点温度也随之降低。研究结果为后续的缺陷深度精准量化奠定了基础。  相似文献   

15.
夏嘉斌  孙广开  宋潮  周正干 《红外与激光工程》2018,47(1):117006-0117006(7)
为了解决核工业领域防辐射用钢铅粘接结构的非接触、高精度无损检测问题,研究激光超声检测方法。建立了粘接结构模型,分析了激光超声的传播及脱粘导致的声波反射和衰减;实验测量了良好粘接与脱粘处的窄带激光超声信号,观测到脱粘导致的界面反射信号幅度变化;分析得出表征脱粘的激光超声反射系数与声波频率和测量位置的关系;通过激光超声C扫描方法实现模拟脱粘试样的检测与成像。研究表明:激光超声方法可以实现两层钢铅粘接结构脱粘的成像检测,在核工业防辐射结构检测中具有应用前景。  相似文献   

16.
为了实现在役绝缘子裂纹的带电检测,采用脉冲激光非接触方式在瓷瓶表面激励超声波,用宽带超声换能器接收声波,并用这种非接触发射-接触接收声波的方法,对含有人工刻槽的棕釉高压瓷质绝缘子表面裂纹进行了检测实验,通过可视化成像检测系统,对声波在被检样品中传播的动态波形进行了实时观察,获得缺陷最大振幅图。结果表明,该方法在绝缘子裂纹远程检测方面具有适用性,且检测不受绝缘子复杂曲面形状的影响。  相似文献   

17.
为了实现在役绝缘子裂纹的带电检测,采用脉冲激光非接触方式在瓷瓶表面激励超声波,用宽带超声换能器接收声波,并用这种非接触发射-接触接收声波的方法,对含有人工刻槽的棕釉高压瓷质绝缘子表面裂纹进行了检测实验,通过可视化成像检测系统,对声波在被检样品中传播的动态波形进行了实时观察,获得缺陷最大振幅图。结果表明,该方法在绝缘子裂纹远程检测方面具有适用性,且检测不受绝缘子复杂曲面形状的影响。  相似文献   

18.
利用太赫兹时域光谱成像技术检测了内含缺陷的玻璃纤维与碳纤维增强复合材料,获得了材料内部缺陷的太赫兹透射图像,从而实现对复合材料样本的无损检测。实验结果表明,太赫兹透射成像技术可检测出多层玻璃纤维复合材料的层间缺陷。但该技术对于碳纤维复合材料中缺陷的检测能力有限,主要是因为碳纤维具有导电特性,导致太赫兹信号对其穿透能力有限。通过对成像模式的调节,太赫兹无损检测技术可对碳纤维材料内部深度约为0.2 mm、宽度为10 mm的缺陷进行成像检测。这为发展准确、灵敏、高效的纤维增强复合材料太赫兹无损检测技术提供了基础实验数据。  相似文献   

19.
为解决飞行器复合材料结构的非接触、高精度无损检测问题,提出一种基于关节型机器人的激光超声检测系统。在系统设计上,利用波长1 064nm的Nd:YAG脉冲激光器激励超声波,基于光折变效应的双波混合干涉测量系统探测超声信号,激励和探测激光全部由光纤传导至光束聚焦端口投射到被测物表面,采用精密六轴关节型机器人作为扫描执行机构进行C型扫描检测。建立了系统的实验室原型,实现了碳/环氧复合材料试样的激光超声C扫描检测,得到试样内部模拟缺陷的分布、形状和尺寸特征,验证了系统的有效性。研究结果表明,研制的机器人辅助激光超声检测系统可以实现碳/环氧复合材料内部直径1mm以上分层的检测,在飞行器复合材料构件的无损检测方面具有应用前景。  相似文献   

20.
利用激光冲击波检测碳纤维材料中的粘接质量   总被引:1,自引:0,他引:1  
碳纤维增强复合材料(CFRP)由于具有出色的力学性能而越来越多地受到关注,但是由于对这种材料粘接结构缺乏有效的无损检测方法而导致其应用受到了局限。发展了一种基于激光冲击波的碳纤维增强复合材料粘接质量无损检测方法。对于一个碳纤维增强复合材料粘接结构,当激光作用在样品表面时,会产生一个冲击波在其中传播,冲击波到达样品后表面时会反射一个稀疏波,并在材料内部形成拉伸。在适当的激光强度下,好的粘接质量将不会受影响;而差的粘接质量将会造成损伤。实验过程中,对样品自由面的速度历史进行了测量,该信号可以反映粘接层的内部损伤情况。这一结论也通过对回收样品的激光超声检测得到了证实。这项技术的发展将使未来碳纤维增强复合材料粘接结构的在线检测成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号