首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对大光腔结构往往导致阈值电流密度增大的矛盾,设计了一种具有较高势垒高度的三量子阱有源区。采用非对称宽波导结构的半导体激光器,该激光器在实现大光腔结构的同时保持阈值电流密度不增加。通过金属有机物化学气相沉积(MOCVD)生长InGaAs/AlGaAs三量子阱有源区以及3.6μm超大光腔半导体激光器的外延结构。结合后期工艺,制备了980nm脊形边发射半导体激光器。在未镀膜情况下,4mm腔长半导体激光器阈值电流为1105.5mA,垂直发散角为15.6°,注入电流为25A时的最大输出功率可达到15.9 W。测试结果表明:所设计的半导体激光器在有效地拓展光场,实现大光腔结构的同时,保证了激光器具有较低的阈值电流。  相似文献   

2.
采用低压金属有机化学气相沉积生长了670nm激光器外延片,有源区采用单量子阱结构,阱区、垒区分别为InGaAsP和AlGaInP.利用该外延片制作了带无电流注入区的氧化物条形激光器.激光器腔长为900μm,电流注入区条宽为100μm,两端的无注入区宽度均为25μm.镀膜后器件的阈值电流为0.4A,输出波长670士2nm,最大输出功率为1100mW,水平、垂直发散角分别为8°,40°.表明该种结构可以提高器件的腔面光灾变功率.  相似文献   

3.
采用低压金属有机化学气相沉积生长了670nm激光器外延片,有源区采用单量子阱结构,阱区、垒区分别为InGaAsP和AlGaInP.利用该外延片制作了带无电流注入区的氧化物条形激光器.激光器腔长为900μm,电流注入区条宽为100μm,两端的无注入区宽度均为25μm.镀膜后器件的阈值电流为0.4A,输出波长670士2nm,最大输出功率为1100mW,水平、垂直发散角分别为8°,40°.表明该种结构可以提高器件的腔面光灾变功率.  相似文献   

4.
新型隧道带间级联双波长半导体激光器   总被引:4,自引:0,他引:4  
提出了通过隧道带间级联实现半导体激光器有多个激射波长的新型物理思想 ,并以GaAs为隧道结 ,InGaAs应变量子阱为有源区 ,利用金属有机物化学气相沉积 (MOCVD)生长了含有两个有源区的双波长半导体激光器。制备了 90 μm条宽的脊型波导器件结构 ,测试得到了能同时激射 95 1nm和 986nm两个波长的双波长半导体激光器 ,腔面未镀膜时的斜率效率达到了 1 12W A ,垂直远场为基模 ,水平方向发散角为 10° ,垂直方向发散角为 36°。  相似文献   

5.
采用低压金属有机化学气相沉积生长了670nm激光器外延片,有源区采用单量子阱结构,阱区、垒区分别为InGaAsP和AlGaInP. 利用该外延片制作了带无电流注入区的氧化物条形激光器. 激光器腔长为900μm,电流注入区条宽为100μm,两端的无注入区宽度均为25μm. 镀膜后器件的阈值电流为0.4A,输出波长670±2nm,最大输出功率为1100mW, 水平、垂直发散角分别为8°, 40°. 表明该种结构可以提高器件的腔面光灾变功率.  相似文献   

6.
研发了小发散角的900 nm波长四叠层隧道结大功率脉冲激光器芯片,设计了大出光面的四叠层材料结构。对比常规的三叠层隧道结激光器,该结构在垂直方向发散角减小的同时,斜率效率和功率均有大幅提升。采用金属有机化学气相沉积(MOCVD)方法实现外延材料的生长,通过半导体激光器制作工艺制成条宽为220μm、腔长为800μm的脉冲激光器芯片,再封装成器件并对其进行测试。测试结果表明,在25℃下,脉冲宽度为100 ns、重复频率为10 kHz、电流为50 A时,激光器输出功率可达150 W,此时远场的垂直发散角为22°。  相似文献   

7.
针对铷原予能级跃迁对光谱的特殊需求,设计并制备了795 nm单模垂直腔面发射激光器(VCSEL).根据对VCSEL的光场和模式的分析和计算结果,设计了单模VCSEL芯片结构.采用MOCVD技术生长了外延结构,制备了不同有源区直径的氧化限制型VCSEL芯片并进行了测试.当有源区直径从6 μm减小到3μm时,VCSEL芯片的边模抑制比(SMSR)由8.76 dB增加到34.05 dB,阈值电流由0.77 mA减小到0.35 mA.有源区直径为6,5,4和3μm的VCSEL芯片的输出功率分别为0.37,0.46,0.58和0.44 mW,有源区直径为4μm的VCSEL芯片的远场为圆形光束,发散角为15°.85℃时3.5 μm有源区直径的VCSEL芯片输出功率为0.125 mW,激射波长为795.3 nm.室温3 dB带宽大于8 GHz,满足了铷原子传感器对VCSEL单模光谱、输出功率及调制速率的要求.  相似文献   

8.
为了改善大功率垂直腔面发射激光器(VCSEL)的模式特性,在GaAs衬底上采用限制扩散湿法刻蚀技术制作出了不同曲率半径的微透镜,与P型和N型分布式布拉格反射镜(DBR)构成复合腔结构,可以对腔内模式进行选择.有源区采用新型的发射波长为980 nm的InGaAs/GaAs应变量子阱,包括9对In0.2Ga0.8As(6 nm)/Ga0.18As.82P(8 nm)量子阱,有源区直径100μm,微透镜直径300 μm,曲率半径959.81μm,表面粗糙度13 nm.室温下,器件连续输出功率大于180 mW,阈值电流200 mA,远场发散角半角宽度分别为7.8°和8.4°,并且与没有微透镜的垂直腔而发射激光器输出特性进行了比较.  相似文献   

9.
980 nm波段的大功率半导体激光器作为抽运源有很重要的应用,但目前该类器件存在光束质量差和谱宽较宽的问题,影响其抽运效率和稳定性。为提高大功率半导体激光器的抽运效率,就要减小其光谱宽度,提升光束质量。而大功率基横模分布反馈激光器(DFB)通过在器件内部引入分布反馈光栅可以实现窄线宽激光的波长稳定输出,并通过优化脊型波导条件来实现基横模模式输出,提升光束质量。测试该器件的光电特性,1000μm腔长器件的阈值电流约为6 m A,斜率效率为0.71 W/A,最大稳定输出功率为130 m W。该激光器的波长随温度漂移系数为0.064 nm/K;对其远场发散角进行测量,得到快轴发散角为34°,慢轴发散角为6.3°。  相似文献   

10.
报道了应用于医疗器械的InP基1730nm波段半导体激光器.外延片采用低压金属有机物化学气相沉积法(MOCVD)生长,有源区为5个周期的InGaAs量子阱层和InGaAsP垒层.器件采用pnpn结限制掩埋结构,有源区脊宽2μm、腔长300μm.室温下腔面镀膜后激光器管芯的阈值电流为18±5mA,8mW输出功率时的工作电流为60±5mA.采用TO封装后,100mA工作电流下激光器的输出功率大于5mW,输出波长为1732±10nm,高温恒流加速老化筛选实验表明,器件具有长期工作的可靠性,满足实用化要求.  相似文献   

11.
报道了应用于医疗器械的InP基1730nm波段半导体激光器.外延片采用低压金属有机物化学气相沉积法(MOCVD)生长,有源区为5个周期的InGaAs量子阱层和InGaAsP垒层.器件采用pnpn结限制掩埋结构,有源区脊宽2μm、腔长300μm.室温下腔面镀膜后激光器管芯的阈值电流为18±5mA,8mW输出功率时的工作电流为60±5mA.采用TO封装后,100mA工作电流下激光器的输出功率大于5mW,输出波长为1732±10nm,高温恒流加速老化筛选实验表明,器件具有长期工作的可靠性,满足实用化要求.  相似文献   

12.
大功率宽条分布反馈激光器研究   总被引:4,自引:1,他引:4  
大功率半导体激光器一般用作抽运源,但其抽运的离子吸收峰带宽一般都比较小。为提高大功率半导体激光器对固体或光纤激光器等的抽运效率,就要降低半导体激光器的输出波长随注入电流和热沉温度的漂移系数。分析了光栅深度和光栅填充因子对激光器输出波长锁定效果的影响,实验验证确定出合适的光栅参数,依据优化条件得出合适的激光器腔长,制备出锁定效果良好的宽条分布反馈激光器。该激光器的单管腔长2.4mm,发光条宽100μm,连续最大输出功率400mW,热沉温度为15℃时的输出波长为954nm,输出波长随注入电流的漂移系数为0.67nm/A,输出波长的温漂系数为0.046nm/K。  相似文献   

13.
日本东芝综合研究所的电子部品研究所研制成温度50℃下输出3 mW 连续振荡波长为638nm 的短波长半导体激光器。至今,日本电气公司已制成20℃下连续振荡波长为640nm的半导体激光器。现今波长接近 He-Ne 激光器(633nm),提高了可靠性。市售的半导体激光器波长为660nm。若缩短半导体激光器的波长,有可能提高光盘的记录密度。如换成 He-Ne 激光器,能缩小光学系统。阈值电流为100mA(25℃下)。束放射角:水平方向为7~8°;垂直方向为38°。AlGaInP 系是折射率波导型。由于电流集中在有源层中心区,代替以前的电流狭窄层,其结构是在 p 型接触层中埋入台面状的 p 型涂层。为此,减少在高温下成膜次数,控制涂层的杂质扩散,保证涂层的杂质浓度,能在50℃下连续振荡。  相似文献   

14.
报道了一种适合中小功率输出的全固态激光器的角抽运方法,抽运光从板条激光器中板条晶体的角部入射,可获得较高的抽运效率和较好的抽运均匀性。采用单角抽运方式,进行了角抽运Nd∶YAG复合板条1.1μm多波长连续运转激光器的实验研究。激光腔采用紧凑型平平直腔结构,腔长仅为22 mm。当注入抽运功率为50.3 W时,1.1μm多波长激光连续输出功率最高达10.9 W,光光转换效率为21.7%,斜率效率为22%。当注入抽运功率为48 W时,1.1μm多波长激光连续输出功率短期不稳定性小于0.6%。  相似文献   

15.
报道了一种采用大光学腔结构的InGaAs/GaAs/AlGaAs应变量子阱高功率半导体激光器。在量子阱能级本征值方程的数值求解基础上 ,优化了InGaAs阱层材料的In组份含量 ;采用大光学腔结构以有效降低垂直于结平面方向的光束发散角及腔面的光功率密度 ,实现器件的高功率、低发散角光。设计的激光器外延结构采用分子束外延 (MBE)方法生长 ,成功获得具有较低激射阈值的 94 0nm波长激光器外延片。对 10 0 μm条形 ,10 0 0 μm腔长的制备器件测试表明 ,器件的最大连续输出功率达到 2W ,峰值波长为 939.4nm ,远场水平发散角为 10° ,垂直发散角为 30°。器件的阈值电流为 30 0mA。  相似文献   

16.
Nd:YAG激光器输出的1.319μm激光在众多领域有重要应用,但目前研究重点集中在连续或准连续输出.采取对腔镜镀高选择性膜及使用色散棱镜等措施抑制1.064μm波长振荡、输出1.319μm激光,分别在自由运转及电光调Q两种情况下作了Nd:YAG激光器输出1.319μm波长的实验,得到调Q输出脉冲最大能量56 mJ,脉宽36 ns,斜效率0.2%,激光发散角2.5 mrad,输出能量不稳定度约4%,使用KTP倍频晶体得到660 nm红光输出.结果表明,用此方法实现电光调Q 1.319 μm脉冲激光及其倍频光输出切实可行,具有重要应用潜力.  相似文献   

17.
半导体激光器在光通信、生物医疗、激光雷达等领域中得到广泛应用,其单模稳定输出特性一直是国内外的研究热点。制备了一种基于表面高阶曲线光栅的宽脊波导半导体激光器,刻蚀曲线型高阶光栅后高阶横模损耗远大于基横模损耗,同时设置宽脊电流限制注入结构,使得高阶横模激射阈值高于基横模阈值,从而改善器件的横模特性并压窄光谱线宽。利用温控模块将器件的工作温度控制为18℃,对腔长为2 mm、条宽为500μm的器件进行测试,在0.5 A电流下测得慢轴发散角为5.3°,快轴发散角为29.2°,在1 A驱动电流下测得3 dB光谱线宽为0.173 nm,边模抑制比为22.6 dB。实验结果表明,表面高阶曲线光栅对宽脊波导半导体激光器中的高阶横模起到了抑制作用且能够压窄光谱线宽,有助于实现半导体激光器的单模稳定输出,同时器件采用紫外光刻工艺,大幅降低了器件的制备难度。  相似文献   

18.
设计并制作了波长为976nm的宽条大功率半导体激光芯片。采用非对称宽波导外延结构设计及金属有机化学气相外延技术生长了低损耗、高效率的外延材料。制备了190μm发光区宽度、4mm腔长、976nm波长的半导体激光芯片,并将其封装为COS器件。测试结果表明:封装器件在室温下的阈值电流为1.05 A,斜率效率为1.12 W/A,最高电光转换效率可达到68.5%;在40℃、19.5 W功率输出时的电光转换效率可以达到60%;9个器件在40℃和15A电流下老化4740h后,无一失效,而且老化前后的功率-电流曲线和光谱没有变化,证明该激光芯片具极高的稳定性和可靠性。  相似文献   

19.
在国内首次报道了氧气传感专用760 nm单模、波长可调谐的垂直腔面发射激光器 (Vertical Cavity Surface-Emitting Laser, VCSEL),详细报道了760 nm VCSEL设计方法与器件制备结果。通过分析AlGaAs量子阱的增益特性,确定了量子阱组分及厚度参数,并设计了室温下增益峰与腔模失配为10 nm的VCSEL激光器结构,完成了VCSEL结构的器件制备。VCSEL激光器在工作温度25 °C时单模功率超过2 mW ,此时边模抑制比为28.1 dB,发散角全角为18.6°。随着工作电流增加,VCSEL激光器的发散角随之增加,然而激光远场光斑仍然为高斯形貌的圆形对称光斑。通过调节VCSEL激光器的工作温度与工作电流,实现了VCSEL单模激光波长从758.740 nm至764.200 nm的近线性连续调谐,VCSEL工作在15 ~ 35 °C时激光波长的电流调谐系数由1.120 nm/mA变至1.192 nm/mA; 温度调谐系数由0.072 nm/°C变至0.077 nm/°C。在两个氧气特征吸收波长附近,VCSEL激光的边模抑制比分别达到了32.6 dB与30.4 dB。  相似文献   

20.
科技简讯     
恩耐激光推出高亮度975nm单管半导体激光器世界领先的高功率半导体激光器制造商恩耐激光公司(nLightPhotonics Corp.)最近推出高亮度5W连续波975nm单管半导体激光器,采用标准的C-M ount和H H L封装。该半导体激光器是掺铒和掺钇光纤激光器和光纤放大器的理想泵浦源。此外,它也广泛应用于医疗和工业领域。发光区域宽度为200μm的5W975nm半导体激光器,工作电流为5.5A,工作电压为1.7V,快轴发散角(FW H M)小于38°和慢轴发散角(FW H M)小于10°。该公司能同时提供快轴准直透镜,其透过率高于95%,准直后的发散角(FW H M)小于2°。恩耐激…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号