首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以气泡为模板,通过简单的一步水热法合成了尖晶石型MⅡFe2O4(M=Fe,Ni)纳米空心微球,并采用柠檬酸对其表面进行了修饰。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)和振动样品磁强计(VSM)对修饰前后纳米空心微球的形貌、结构和磁性能进行了表征。结果表明,MⅡFe2O4(M=Fe,Ni)纳米空心微球的尺寸在300~600nm,前躯体溶液的pH值大于9或反应时间小于12h都不能生成空心结构。此外,MⅡFe2O4(M=Fe,Ni)纳米空心微球呈现较好的超顺磁性,但与纳米Fe3O4实心微粒相比较,Fe3O4纳米空心微球的饱和磁化强度却有所降低。  相似文献   

2.
采用共沉淀法制备了油酸修饰的Fe3O4纳米粒子,并采用相反转工艺制备了Fe3O4/P(St-BA)复合微球。用透射电镜(TEM)和热失重(TGA)方法表征了Fe3O4纳米粒子、Fe3O4/P(St-BA)复合微球的形貌和Fe3O4含量。TEM显示大部分Fe3O4粒子被包覆在复合微球内部,同时有部分Fe3O4粒子嵌在微球表面。研究表明:Fe3O4/P(St-BA)复合微球具有良好的磁响应性,油酸量为0.4g修饰的Fe3O4粒子在混合单体中分散效果好。粒度测试结果显示转相水体系中聚乙烯醇和十二烷基硫酸钠复配制备的微球粒径较小且分布较窄;转相过程提高转速微球平均粒径变小,粒度分布变窄。  相似文献   

3.
化学修饰对Fe3O4磁性微球性能的影响   总被引:1,自引:0,他引:1  
采用部分还原沉淀法制备了Fe3O4磁性微球,并用硅烷偶联剂对其进行了表面修饰.利用X-射线衍射(XRD)、透射电子显微镜(TEM)、原子力显微镜(AFM)、红外光谱(IR)和分光光度计等手段对其结构和性能进行了表征和测量,研究了硅烷偶联剂对磁性纳米微球性能的影响.结果表明,修饰后的磁性纳米微球具有良好的分散性和磁响应性,并且在强酸环境中具有良好的稳定性.经不同硅烷偶联剂修饰后的微球表面可带有-OH,-NH2,-NH,-C=O,-C=C等多种有机功能基团.  相似文献   

4.
微波辐射乳液聚合制备磁性高分子微球   总被引:1,自引:0,他引:1  
用化学共沉淀法制备了Fe3O4纳米粒子,并用油酸和十二烷基硫酸钠对Fe3O4纳米粒子进行表面修饰,得到了稳定的水分散性纳米Fe3O4磁流体。在Fe3O4磁流体存在下,以苯乙烯和丙烯酰胺为单体,采用微波辐射乳液聚合法制备了Fe3O4/聚(苯乙烯-丙烯酰胺)磁性高分子微球,表征了磁性高分子微球的形态与结构,研究了磁性高分子微球的粒径、热稳定性、磁含量与饱和磁化强度。研究发现,在选定合适的聚合条件下,通过微波辐射乳液聚合法可以制得粒径为70 nm~80 nm、磁含量为18.2%的磁性高分子微球。  相似文献   

5.
用超声溶剂热法制备了磁性纳米ZnxCo1-xFe2O4空心微球,采用X射线衍射仪(XRD)和透射电子显微镜(TEM)对其结构和形貌进行了表征。结果表明,所制备的ZnxCo1-xFe2O4空心微球均为标准的立方结构,说明锌的掺杂并不影响产物的晶型,但对产物的粒径影响较大。所制备的CoFe2O4空心微球的平均粒径为50 nm左右,但Zn0.5Co0.5Fe2O4空心微球的平均粒径为200 nm左右;用振动样品磁强计(VSM)以及网络矢量分析仪测试了微球的磁性能和吸波性能,结果显示,微球的饱和磁化强度随锌含量的增加先略微增大后减小,而矫顽力随锌含量的增加单调递减。当x=0.3时微球的磁性和吸波性能都为最佳。  相似文献   

6.
采用气泡液膜法,将Zn2+,Ni2+和Fe3+与OH-在液膜中进行共沉淀反应,制得了Ni0.6Zn0.4Fe2O4铁氧体的前躯体,用元素分析、EDS、TEM、FT-IR、XRD和VSM方法进行表征。结果表明,前躯体中Ni、Zn和Fe元素组成较精确地保持了原料溶液中Zn2+,Ni2+和Fe3+的配料摩尔比并纳米级均匀分布。前躯体组成是0.6Ni(OH)2.0.4Zn(OH)2.2Fe(OH)3复合物,粒径为1~3nm的球状纳米粒子。前躯体于240℃水热反应4h,制得纳米Ni0.6Zn0.4Fe2O4铁氧体,其Ms=73.669emu/g,Mr=1.1035emu/g,Hc=8.896Gs,密度d=5.554g/cm3,再于800℃烧结1h,制得固结铁氧体的Ms=82.136emu/g。  相似文献   

7.
以单分散的苯乙烯-甲基丙烯酸甲酯共聚物(P(St-co-MMA))微球为载体,Fe Cl3·6H2O和Fe SO4·7H2O为前驱体,用反相共沉淀法制备了Fe3O4/P(St-co-MMA)微纳米原位复合物。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱仪(FTIR)、X射线衍射仪(XRD)、振动样品磁强计(VSM)以及氮吸附/脱附等温线等手段对Fe3O4/P(St-co-MMA)的形貌、结构、磁性能、孔径、孔体积和比表面积进行了表征。结果表明,纳米级Fe3O4已经成功地负载在微米级P(St-co-MMA)的表面。在制备的Fe3O4/P(St-co-MMA)微纳米复合物中有介孔,其平均孔径、孔体积和比表面积分别为15.41 nm、0.15953 cm3/g和32.82 m2/g。Fe3O4/P(St-co-MMA)微纳米复合物具有超顺磁性和较好的磁响应性,能满足固液相磁分离的要求。  相似文献   

8.
在以共沉淀法制备的磁性Fe3O4纳米微粒的存在下,以甲基丙烯酸(MAA)为单体,采用反相悬浮聚合法制得了一种新型的磁性Fe3O4/PMAA高分子复合微球。考察了超声波预处理,磁流体用量以及聚合反应时搅拌速度等因素对复合微球成球性的影响。利用扫描电子显微镜(SEM),X-衍射仪(XRD),能谱仪(EDS),傅里叶变换红外光谱仪(FTIR)等手段对磁性复合微球的表面形貌及组成进行了分析。实验表明,复合微球呈现球状结构,表面负载Fe3O4纳米微粒。由于此复合微球由于磁响应性具有易于分离的优点,而且由于复合微球上存在大量羧基功能基团可进行后续修饰的特点,因此,这类材料有望在构筑纳米反应器,处理印染废水等方面具有广阔的应用前景。  相似文献   

9.
利用静电自组装的方法,将羧甲基纤维素(CMC)组装到Fe3O4上得到Fe3O4-羧甲基纤维素(Fe3O4-CMC),再用戊二醛将聚乙烯亚胺(PEI)交联到Fe3O4-CMC上,制备出Fe3O4-羧甲基纤维素-聚乙烯亚胺(Fe3O4-CMC-PEI)微球。用透射电镜、X射线衍射、红外光谱、X射线光电子能谱和震动样品磁强计对Fe3O4-CMC-PEI微球进行了表征,用原子吸收分光光度计测定了其对Cd2+离子的吸附性能。结果表明,CMC组装到Fe3O4表面,Fe3O4-CMC和PEI在戊二醛的作用下发生交联得到Fe3O4-CMC-PEI微球。Fe3O4-CMC-PEI微球的粒径为10~30nm,饱和磁化强度为55.20A·m2/kg。Fe3O4在微球中的结构没有发生改变,仍为纯单一相的反尖晶石型结构。Fe3O4-CMC-PEI微球对Cd2+离子表现出了良好的吸附性能,饱和吸附容量为69.44mg/g,吸附等温数据符合Langmuir模型,吸附动力学符合拟二级反应动力学模型。  相似文献   

10.
以磁性纳米Fe3O4为核,利用苯乙烯(St)聚合对其进行包覆,并进一步对表面进行氯取代、乙二胺取代及氯乙酸取代反应,制备了Fe3O4/PS-EDTA纳米磁性复合微球。利用扫描电子显微镜(SEM)、X射线衍射分析(XRD)、热重(TGA)分析、傅里叶变换红外(FT-IR)光谱仪、紫外分光光度计等对Fe3O4/PSEDTA微球性能进行了表征。结果表明,EDTA有效地以化学键合方式连接到纳米磁性Fe3O4/PS表面,且粒径均匀。Fe3O4/PS-EDTA对Cu2+表现出了良好的吸附性能,饱和吸附量为98.59mg/g,吸附等温数据符合Langmuir模型,吸附动力学符合拟二级反应动力学模型。  相似文献   

11.
氧化硅包裹四氧化三铁微球的制备及表征   总被引:1,自引:0,他引:1  
在室温下,采用H2O2氧化Fe(OH)2悬浮液的方法制备得到了粒径23nm左右的磁性纳米粒子,经X射线衍射检测制备得到的是Fe3O4磁性纳米粒子,粒子的饱和磁化强度为59.05emu/g。先用硅烷偶联剂KH560修饰Fe3O4,提高粒子在乙醇溶液中的单分散性,在此基础上采用溶胶凝胶法通过TEOS水解制备得到分散性佳、尺寸均匀、粒径为25nm左右核壳结构的氧化硅包覆Fe3O4纳米粒子的磁微球。  相似文献   

12.
以木薯淀粉(St)和自制纳米表面改性Fe3O4(M)微粒为主要原料,采用反相乳液聚合法制备了磁性木薯淀粉微球(MSt),并通过红外光谱(FT-IR)、X射线衍射(XRD)、透射电镜(TEM)、同步热分析(TG-DSC)和振动样品磁强计(VSM)等手段对磁性木薯淀粉微球进行结构性能分析和反应机理探讨。结果表明,FT-IR分析显示磁性微粒Fe3O4与淀粉成功发生交联反应;TEM和XRD分析显示微球具有以Fe3O4为核淀粉为壳的核壳结构;TG-DSC分析表明微球的热稳定性相比原淀粉略有降低;微球的饱和磁化强度为7.07emu/g,磁化率为3.005×10-6emu/Oe,微球具有磁响应性和超顺磁性。该微球反应历程符合自由基聚合机理。  相似文献   

13.
采用固相反应法合成了(1-x)CaTiO3/xNi0.5Zn0.5Fe2O4(0≤x≤1.0)复合材料,并研究了复合材料的物相、微观结构、介电性能和磁性能。结果表明:样品中仅含有钙钛矿型CaTiO3和尖晶石型Ni0.5Zn0.5Fe2O4。1260℃保温3h,样品相对密度达到98.91%,颗粒尺寸约为2μm。样品介电常数随Ni0.5Zn0.5Fe2O4含量(x)增加而增大。当x=0.7、测试频率为103 Hz时,样品介电常数(εr)和介电损耗(tanδ)分别为2629.18和1.74。(1-x)CaTiO3/xNi0.5Zn0.5Fe2O4复合材料显示磁性。其中x=0.7时,样品饱和磁化强度(Ms)达到49.07A·m2/kg;这归因于Ni0.5Zn0.5Fe2O4具有优异的磁性能。  相似文献   

14.
以Zn(NO3)2.6H2O、Ni(NO3)2.6H2O和Fe(NO3)3.9H2O及柠檬酸为原料,采用溶胶-凝胶法制备前驱体,在1 200℃下煅烧3 h合成ZnFe2O4和Ni0.5Zn0.5Fe2O4铁氧体粉体。利用差热分析、X射线衍射、扫描电镜、透射电镜和红外光谱等测试手段对产物进行分析和表征。结果表明:ZnFe2O4和Ni0.5Zn0.5Fe2O4属于立方晶系尖晶石结构,结晶完整,晶粒大小在100 nm左右。在0.2~1.8 GHz的频率下对产品进行了电磁损耗性能测试,发现Ni0.5Zn0.5Fe2O4具有较好的电磁损耗特性。  相似文献   

15.
首先通过水热法合成了单分散空心Fe3O4磁球,之后利用蒸馏沉淀聚合将P(GMA-DVB)聚合物层包覆在Fe3O4磁球表面形成Fe3O4/P(GMA-DVB)核壳结构,巯基化处理后吸附Au纳米粒子,得到磁性核壳Fe3O4/P(GMA-DVB)-SH-Au复合催化剂。利用TEM,SEM,FTIR,XRD,TGA,VSM及UV-vis对其进行表征,并考察该催化剂在催化还原4-硝基苯酚反应中的催化性能。结果表明合成的材料粒径均匀,球形度规整,核壳结构明显,在催化反应中,Fe3O4/P(GMA-DVB)-SH-Au表现出优异的催化性能,而且经过连续8次循环使用后,催化效率仍可保持80%以上。  相似文献   

16.
PAA-PMMA交联磁性复合微球的制备与性能研究   总被引:1,自引:0,他引:1  
通过滴加氨水控制Fe(Ⅱ)与Fe(Ⅲ)盐混合溶液的pH值,经共沉淀法制得了Fe3O4纳米颗粒,其平均粒径约为13nm.进而用一定量的油酸钠对其原位改性,得到了表面呈疏水性的油基Fe3O4纳米颗粒.在Fe3O4纳米颗粒和二乙烯苯(DVB)存在下,以聚乙烯吡咯烷酮(PVP)为稳定剂,乙醇/水的混合体系为反应介质,由偶氮二异丁腈(AIBN)引发甲基丙烯酸甲酯(MMA)和丙烯酸(AA)进行分散共聚,制得了PAA-PMMA交联型磁性复合微球,核内富含Fe3O4纳米颗粒,其含量可分别调整在42%~71%(质量分数)之间,改变聚合反应条件可将复合微球的粒径控制在100nm~2μm的范围内.研究发现Fe3O4纳米颗粒被PAA-PMMA包覆后,可明显延长其在盐酸中的稳定性.在外加磁场作用下该复合微球能实现快速的分离.  相似文献   

17.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

18.
以聚苯乙烯球为模板,水解钛酸四正丁酯制备出了空心TiO2微球。采用原子转移自由基聚合法合成了聚N,N-二乙基胺基甲基丙烯酸乙酯(PDEAEMA)高分子链,利用"点击"化学在空心TiO2微球表面接枝PDEAEMA高分子链,季铵化后与贵金属离子进行离子交换用硼氢化钠还原得TiO2-Q-PDEAEMA/M(0)复合纳米微球。通过傅里叶变换红外光谱(FT-IR)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等对制备的复合微球进行了表征。结果表明,TiO2-Q-PDEAEMA/M(0)空心纳米复合微球在水中的分散行为具有pH敏感性。  相似文献   

19.
利用高温固相反应法制备了新型三元锂离子电池正极材料Li2Ru1/3Co1/3M1/3O3(M=Mn、Ni、Fe)。通过X射线衍射技术和电化学性能测试对Li2Ru1/3Co1/3M1/3O3的微观结构及其电化学性能进行了表征。研究结果表明,Li2Ru1/3Co1/3Ni1/3O3和Li2Ru1/3Co1/3Fe1/3O3为六方层状结构,空间群为R-3M,而Li2Ru1/3Co1/3Mn1/3O3保持了单斜结构;电化学性能测试表明Li2Ru1/3Co1/3Mn1/3O3的电化学性能优于掺杂Fe和Ni的三元材料,该材料具有良好的循环性能,在电流密度为16 m A/g情况下,首次充电容量达到190 m Ah/g,首次放电容量为171 m Ah/g,50次循环后容量保持率为98%。  相似文献   

20.
超顺磁性Fe3O4纳米颗粒的制备及修饰   总被引:2,自引:0,他引:2  
李文章  李洁  丘克强  曾恒志 《功能材料》2007,38(8):1279-1281,1286
利用2-吡咯烷酮和乙酰丙酮铁为原料制备出Fe3O4磁性纳米粒子,选择偶联剂γ-氨丙基三乙氧基硅烷(NH2C3H6Si(OC2H5)3)对磁性材料进行了表面修饰.经XRD、TEM、VSM、FT-IR测试结果表明,制备出的Fe3O4磁性纳米粒子粒径均一(8~10nm)、结晶度高、磁响应较强;通过控制反应回流时间,可以改变粒子的大小;经表面改性以后,-OH、-NH、-NH2、-C-O、-C-OH等多种功能基团负载到磁性Fe3O4纳米粒子表面,增强了微球的生物相容性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号