首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CYCIAE-30为中国原子能科学研究院于1994年研究建成的我国第1台医用强流回旋加速器,多年来,每年开机供束时间约为5000h,基本上满足了国内各医院定期批量供应^18F、^201T1、^68Ge等医用放射性同位素的需求。目前,中国原子能科学研究院承担核能开发科研项目“同位素与辐射应用关键技术研究”,在原有配套束流输运线的基础上开展了束流输运系统的升级改造方案设计,增加了气体靶生产线以生产新品种医用同位素。  相似文献   

2.
中国原子能科学研究院(CIAE)自1958年首台回旋加速器成功出束以来,已经历了60余年的回旋加速器创新与发展,并由此带动了我国核科学技术基础研究和应用技术的发展。本文在简要回顾回旋加速器前30年发展历程的基础上,重点阐述后30年围绕紧凑型回旋加速器的科技创新和应用,主要包括100 MeV强流质子回旋加速器、医用小型回旋加速器、质子治疗超导回旋加速器及高功率等时性圆型加速器等多种先进的质子加速器研发。  相似文献   

3.
中国原子能科学研究院(CIAE)自1958年首台回旋加速器成功出束以来,已经历了60余年的回旋加速器创新与发展,并由此带动了我国核科学技术基础研究和应用技术的发展。本文在简要回顾回旋加速器前30年发展历程的基础上,重点阐述后30年围绕紧凑型回旋加速器的科技创新和应用,主要包括100 MeV强流质子回旋加速器、医用小型回旋加速器、质子治疗超导回旋加速器及高功率等时性圆型加速器等多种先进的质子加速器研发。  相似文献   

4.
中国原子能科学研究院的串列加速器升级工程将利用新建的1台100MeV回旋加速器作为驱动加速器,通过新建的在线同位素分离器,在线产生要求的放射性核束,将其注入HI-13串列加速器中加速后进行各种物理实验研究。ISOL工作时,靶源系统会产生很多放射性核素,  相似文献   

5.
医用回旋加速器使用内部负氢离子源,可简化整机结构,节省造价。回旋加速器工程组基于负PIG离子源的工作原理和现有的实验条件,研制了1台内部负氢离子源,并进行了出束实验,在实验条件受到各种限制的情况下,引出的束流达到了160 μA。  相似文献   

6.
TRIUMF的加速器设施ISAC成功地展示了基于ISOL方法的放射性核束装置的驱动加速器,强流H回旋加速器是一个非常合理的选择。因此,中国原子能科学研究院根据自身的技术特点和国防核技术需求背景分析,建议研制一台75~100 MeV、200~500μA H~-回旋加速器做为驱动加速器,建设北京串列加速器升级工程,这将是一个由多台加速器灵活组合而成的、包括放射性核束靶站的多用途核科学研究设施。  相似文献   

7.
100MeV回旋加速器中心区实验台架工作在2007年取得了重要进展。所有设备已安装、调试完毕,通过分系统和联机调试,从离子源到注入偏转板出口的束流传输效率达到了75%,内靶已出束,取得了初步的实验成果。此实验台架的建成为100MeV强流回旋加速器的磁场、高频、注入、引出、中心区、控制、束流测量等系统的结构设计及束流动力学的验证提供了一个完整的实验平台。中心区实验台架装置示于图1。  相似文献   

8.
随着放射医疗技术的发展,医用回旋质子加速器在国内拥有广阔的市场前景。我国建设医用回旋质子加速器测试间,可提高进口医用回旋质子加速器投产效率。为保证测试间辐射安全性,本研究选取进口占比较大的16 MeV回旋质子加速器测试间作为研究对象,利用FLUKA软件建立靶件、屏蔽体及材料模型,设置粒子类型、能量、束流强度、束流损失率等参数,模拟测试间周围辐射剂量场分布。结果表明,测试间屏蔽体外侧30 cm处剂量率范围为0.146~1.801μSv/h,满足2.5μSv/h的剂量率限值要求。本研究方法及结果可为同类工程辐射安全分析提供参考。  相似文献   

9.
北京放射性核束装置(BRIF)于2004年已在中国原子能科学研究院正式启动。该装置将提供强流质子束和放射性核束(RIB)用于基础和应用研究,如中子物理、核结构、材料科学与生命科学、医用同位素生产等。在该工程中,100MeV强流质子回旋加速器(CYCIAE-100)被选为驱动加速器,它提供能量为75~100MeV、流强为200LIA的质子束。2005年100MeV回旋加速器各系统的初步设计,包括束流动力学、磁铁、高频等都已完成。与回旋加速器设计相关的实验验证工作也已深入展开。  相似文献   

10.
正【世界核新闻网站2018年9月20日报道】印度原子能部2018年9月19日宣布,本国最大的医用回旋加速器Cyclone-30已投入运行。这台加速器位于加尔各答(Kolkata)的可变能量回旋加速器中心,能够生产医用放射性同位素,并为材料科学及核物理研究提供专用射束。9月早些时候,Cyclone-30产生的30 MeV射束已进入Faraday杯——这是一个用于在真  相似文献   

11.
日本放射性同位素学会历史日本核研究与放射性同位素应用始于1937年Y.Nishina博士在东京的物理化学研究院建成的第一台回旋加速器。这台回旋加速器用于制备放射性同位素或研究核裂变,以及放射性同位素和辐射的化学、生物学和药物学应用。第2台回旋加速器在...  相似文献   

12.
北京放射性核束装置在线同位素分离器(BRISOL)采用一台100 MeV回旋加速器提供的最大200 μA的质子束打靶在线产生放射性核束,其最高质量分辨率好于20 000。2015年,BRISOL装置建成并使用05 μA质子束轰击氧化钙靶产生了37K+、38K+放射性核束,其中38K+的产额为1×106 pps。为了提高氧化钙靶产生钾放射性核束的产额以满足物理用户需求,BRISOL于近期开展了氧化钙靶的在线实验。实验中使用氧化钙靶产生了36~38K+、43K+、45~47K+等多种放射性核束,同时将38K+的最大产额提高到了112×1010 pps。本文详细介绍氧化钙靶的研制及在线实验结果。  相似文献   

13.
CYCIAE一100中心区试验台架为中国原子能科学研究院串列升级技术部建成的1台10MeV紧凑型强流回旋加速器,加速H-离子,剥离引出质子束。目前,该加速器正在进行束流调试工作。在束流调试阶段,安装了剥离膜,进行了束流的引出调试实验。  相似文献   

14.
中国原子能科学研究院(CIAE)在20世纪90年代建造了一台30 MeV紧凑型强流质子回旋加速器后,经过近30年的发展,先后自主研发成功了基于剥离引出技术的能量为10 MeV、14 MeV、100 MeV、硼中子俘获治疗用14 MeV/1 mA等系列能量的紧凑型强流质子回旋加速器。建成的100 MeV紧凑型强流质子回旋加速器(CYCIAE-100),是目前国际上能量较高的一台紧凑型强流质子回旋加速器,最高流强达到520 μA,束流功率达到52 kW。建成的硼中子俘获治疗用的质子回旋加速器,也是我国首次自主研发成功的引出质子束流强达到mA量级的强流质子回旋加速器。在系列能量的紧凑型强流质子回旋加速器研发过程中,CIAE对剥离引出后的束流色散效应、剥离膜与束流夹角对引出后的束流品质的影响、单圈剥离引出技术等紧凑型强流质子回旋加速器剥离引出技术等方面展开了研究,且自主开发出了剥离引出计算程序,为紧凑型强流质子回旋加速器的应用作出了贡献。  相似文献   

15.
HI-13串列加速器升级工程进展与现状   总被引:2,自引:0,他引:2  
中国原子能科学研究院的"HI-13串列加速器升级工程"是在现有的HI-13串列加速器的基础上,前端新建一台100 MeV、200 μA紧凑型质子回旋加速器(CYCIAE-100)和质量分辨为20000的在线同位素分离器(ISOL),后端新建一台能量增益为2 MeV/q的超导直线增能器(SCB),形成一加速器组合装置.各加速器可单独使用,也可联合使用.回旋加速器单独使用时主要用于中子物理、辐射物理、生物医学的研究及同位素研发.联合使用时,回旋加速器的质子束将用于轰击靶源,产生放射性同位素束,经在线同位素分离器后注入串列加速器加速,为用户提供放射性核素束流.  相似文献   

16.
中国原子能科学研究院的串列加速器升级工程将利用新建的1台100MeV回旋加速器作为驱动加速器,通过新建的在线同位素分离器,在线产生所要求的放射性核束,将其注入HI-13串列加速器中加速后开展各种物理实验研究。其中,在线同位素分离器所产生的放射性核束的强度非常低,  相似文献   

17.
<正>为满足恶性肿瘤、心脑血管等医疗行业重大疾病早期诊断的需求,回旋加速器研究设计中心正研制一台用于硼中子治疗(BNCT)的14 MeV医用回旋加速器。加速器主磁铁采用紧凑型结构,选择4叶片直边扇形磁极,引出束流强度为1mA,针对BNCT医用小型回旋加速器结构特点,采用一套全自动化的磁场测量系统对其进行磁场测量与垫补。  相似文献   

18.
100MeV强流回旋加速器及束流管道系统(CYCIAE-100)工程计划建设1台能量为75-100MeV、质子束流强度200μA的回旋加速器,7条质子束流管道和2条中子束流管道。2006年,重点完成了初步设计,并开展施工设计工作;开始工程重大设备的制造工作;基本完成了研究试验项目。  相似文献   

19.
北京放射性核束装置,简称为BRIF,是一个新的基于放射性核束装置的加速器工程。该工程由以下几个部分组成:100MeV回旋加速器、在线同位素分离系统、现有的串列加速器注入器改造、超导直线增能器、各种不同的物理实验终端和一个同位素生产研究靶站。作为驱动加速器,100MeV的H^-回旋加速器能够提供75~100MeV、200~500μA以上的质子束流。对于最终能量不高于100MeV,束流强度低于lmA的回旋加速器,选择紧凑型磁铁,采用加速H^-、剥离引出的技术路径,将使得加速器结构更小,也更便宜。  相似文献   

20.
经过60年的发展,中国原子能科学研究院(CIAE)独立自主地开展了基于PIC技术的强流回旋加速器束流动力学的大规模并行计算的核心算法研究,开发了CYCPIC2D、CYCPIC3D和OPAL-CYCL等强流回旋加速器束流动力学模拟程序,搭建了专用的高性能并行化计算机群PANDA。本文以CIAE已建成及在研的不同类型的回旋加速器为例,总结了回旋加速器基本束流动力学的分析方法和主要计算结果,并介绍了CIAE在回旋加速器束流动力学与多物理场模拟技术方面的发展与应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号