首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate current saturation at short channel lengths in graphene field-effect transistors (GFETs). Saturation is necessary to achieve low-output conductance required for device power gain. Dual-channel pulsed current-voltage measurements are performed to eliminate the significant effects of trapped charge in the gate dielectric, a problem common to all oxide-based dielectric films on graphene. With pulsed measurements, graphene transistors with channel lengths as small as 130 nm achieve output conductance as low as 0.3 mS/μm in saturation. The transconductance of the devices is independent of channel length, consistent with a velocity saturation model of high-field transport. Saturation velocities have a density dependence consistent with diffusive transport limited by optical phonon emission.  相似文献   

2.
Schmidt C  Kim B  Grabner H  Ries J  Kulomaa M  Vogel V 《Nano letters》2012,12(7):3466-3471
Major efforts are underway to harness motor proteins for technical applications. Yet how to best attach cargo to microtubules that serve as kinesin-driven "molecular shuttles" without compromising transport performance remains challenging. Furthermore, microtubule-associated proteins (MAPs) can block motor protein-powered transport in neurons, which can lead to neurodegenerative diseases. Again it is unclear how different physical roadblock parameters interfere with the stepping motion of kinesins. Here, we employ a series of MAPs, tailored (strept)avidins, and DNA as model roadblocks and determine how their geometrical, nanomechanical, and electrochemical properties can reduce kinesin-mediated transport. Our results provide insights into kinesin transport regulation and might facilitate the choice of appropriate cargo linkers for motor protein-driven transport devices.  相似文献   

3.
In long-baseline optical stellar interferometry, it is necessary to maintain optical path equality between the two arms of an interferometer in order to measure the fringe visibility. There will be errors in matching the optical paths because of a number of factors, and it is desirable to use an automatic system to monitor and correct such path errors. One type of system is a delay tracker, based on imaging of the channeled spectrum. The tracking algorithm is designed to maintain a fixed number of fringes, ideally linearly spaced, across the observed spectral band. This results in a constant optical path difference, which may be incompatible with the requirement of path equality for the measurement of fringe visibility. In a practical interferometer that uses an optical path-length compensator operating in air, there is a complication since air paths introduce differential dispersion. This dispersion can be compensated for by including dispersion correction. By modifying the operation of an appropriately designed dispersion corrector, we show that it is possible to make the optical path difference zero at the measurement wavelength and, at the same time, to produce linearly spaced channel fringes across the tracking band.  相似文献   

4.
Addresses the question of whether a "rigid molecule" (one which does not deform in an external field) used as the conducting channel in a standard three-terminal MOSFET configuration can offer any performance advantage relative to a standard silicon MOSFET. A self-consistent solution of coupled quantum transport and Poisson's equations shows that even for extremely small channel lengths (about 1 nm), a "well-tempered" molecular FET demands much the same electrostatic considerations as a "well-tempered" conventional MOSFET. In other words, we show that just as in a conventional MOSFET, the gate oxide thickness needs to be much smaller than the channel length (length of the molecule) for the gate control to be effective. Furthermore, we show that a rigid molecule with metallic source and drain contacts has a temperature independent subthreshold slope much larger than 60 mV/decade, because the metal-induced gap states in the channel prevent it from turning off abruptly. However, this disadvantage can be overcome by using semiconductor contacts because of their band-limited nature.  相似文献   

5.
For the scaling of ultrathin body double gate (UTB DG) MOSFETs to channel lengths below 10 nm, a silicon body thickness of less than 5 nm is required. At these dimensions the influence of atomic scale roughness at the interface between the silicon body and the gate dielectric becomes significant, producing appreciable body thickness fluctuations. These fluctuations result in a scattering potential related to the quantum confinement variation within the channel which, similarly to the interface roughness scattering, influences the mobility, the drive current and the intrinsic parameter variations. In this paper we have developed an ensemble Monte Carlo simulation approach to study the impact of quantum confinement scattering on the transport in sub-10 nm UTB DG MOSFETs, and the corresponding intrinsic parameter variations. By comparing the Monte Carlo simulations with drift-diffusion simulations we quantify the important contribution of the quantum confinement related scattering to the current fluctuations in such devices  相似文献   

6.
A survey of the most interesting results on nanometer-scale organic thin film transistors (nano-OTFT) is presented. Additionally, we discuss our recent results on the properties of end-group functionalized organic self-assembled monolayers and on their use in the fabrication of nanometer-scale field-effect transistors. Nanometer-scale organic transistors (channel length 30 nm) were fabricated, with a self-assembled monolayer as gate insulator. The carrier transport in these transistors, as a function of the channel length, was investigated, and a transition from a dispersive to a ballistic transport at a channel length of 200 nm was observed. On a molecular scale, alkyl monolayers functionalized at their omega-ends by aromatic moieties were prepared. A high anisotropic conductivity in molecular insulator/semiconductor heterostructures of monolayer thickness was observed. These molecular architectures provide a basis for the building blocks of molecular transistors.  相似文献   

7.
Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule-electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.  相似文献   

8.
This study presents sample measurements and analysis characterising the radio channel for outdoor short-range sensor networks. A number of transmit and receive antennas are placed on the ground in an open area. The measured propagation channel is time varying because of the controlled motion of a person walking in the vicinity of the nodes. The statistics of both the line-of-sight (LOS) path and the scattered component of the measured channel are observed to be non-stationary. The channel (power) gains are found to be significantly influenced by the pedestrian movement, only when the LOS path is momentarily blocked. The authors present a generic approach to model receive signal fluctuations because of body blockage of the LOS path. Our approach, which is similar to the referenced work of Pagani and Pajusco, additionally models the time-variant Doppler spectrum of the residue (scattered) component of the measured channel, that is the remainder of the measured channel after the LOS path has been extracted. The proposed modelling approach is parameterised and validated from the measurements.  相似文献   

9.
The diffusion of small suspended particles in a turbulent channel flow is studied by solving the transport advection-diffusion equation. The mean flowfield in the channel is simulated using a two-equation k-ε turbulence model. Deposition velocity is evaluated at different sections in the channel for different particle sizes and flow Reynolds numbers. The effects of turbulence dispersion and Brownian diffusion on particle deposition velocity are discussed. The variation of particle deposition velocity with particle diameter, density and flow Reynolds number are analyzed. The wall deposition velocities for different size particles are compared with those obtained by other models.  相似文献   

10.
We present a systematic study on low-frequency current fluctuations of nanodevices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g., Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon.  相似文献   

11.
Charge injection and transport in bottom-contact regioregular-poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs), wherein the Au source and drain contacts are modified by self-assembled monolayers (SAMs), is reported at different channel length scales. Ultraviolet photoelectron spectroscopy is used to measure the change in metal work function upon treatment with four SAMs consisting of thiol-adsorbates of different chemical composition. Treatment of FETs with electron-poor (electron-rich) SAMs resulted in an increase (decrease) in contact metal work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work function affects charge injection and is reflected in the form of the modulation of the contact resistance, R(C). For example, R(C) decreased to 0.18 MΩ in the case of the (electron-poor) 3,5-bis-trifluoromethylbenzenethiol treated contacts from the value of 0.61 MΩ measured in the case of clean Au-contacts, whereas it increased to 0.97 MΩ in the case of the (electron-rich) 3-thiomethylthiophene treated contacts. Field-effect mobility values are observed to be affected in short-channel devices (<20 μm) but not in long-channel devices. This channel-length-dependent behavior of mobility is attributed to grain-boundary limited charge transport at longer channel lengths in these devices.  相似文献   

12.
An electronic conductance with small fluctuations, which is stipulated in single-molecule junctions, is necessary for the precise control of single-molecule devices. However, the suppression of conductance fluctuations in conventional molecular junctions is intrinsically difficult because the fluctuations are related to the contact fluctuations and molecular motion. In the present study involving experimental and theoretical investigations, it is found that covering a single π-conjugated wire with an α-cyclodextrin molecule is a promising technique for suppressing conductance fluctuations. The conductance histogram of the covered molecular junction measured with the scanning tunneling microscope break-junction technique shows that the conductance peak for the covered junction is sharper than that of the uncovered junction. The covering technique thus has two prominent effects: the suppression of intramolecular motion, and the elimination of intermolecular interactions. Theoretical calculations of electronic conductance clearly support these experimental observations.  相似文献   

13.
Electrical transport studies on graphene have been focused mainly on the linear dispersion region around the Fermi level and, in particular, on the effects associated with the quasiparticles in graphene behaving as relativistic particles known as Dirac fermions. However, some theoretical work has suggested that several features of electron transport in graphene are better described by conventional semiconductor physics. Here we use scanning photocurrent microscopy to explore the impact of electrical contacts and sheet edges on charge transport through graphene devices. The photocurrent distribution reveals the presence of potential steps that act as transport barriers at the metal contacts. Modulations in the electrical potential within the graphene sheets are also observed. Moreover, we find that the transition from the p- to n-type regime induced by electrostatic gating does not occur homogeneously within the sheets. Instead, at low carrier densities we observe the formation of p-type conducting edges surrounding a central n-type channel.  相似文献   

14.
In this paper, we have fabricated nanoscale silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory devices by means of the sidewall patterning technique. The fabricated SONOS devices have a 30-nm-long and 30-nm-wide channel with 2.3/12/4.5-nm-thick oxide/nitride/oxide film on fully depleted-silicon-on-insulator (FD-SOI) substrate. The short channel effect is well suppressed though devices have very short channel length and width. Also, the fabricated SONOS devices guarantee good retention and endurance characteristics. In 30-nm SONOS devices, channel hot electron injection program mechanism is inefficient and 2-b operation based on localized carrier trapping in the nitride film is difficult. The erase speed is improved by means of band-to-band (BTB) assisted hole injection mechanism. In 30-nm SONOS devices, program and erase operation can be performed efficiently with improved erase speed by combination of Fowler-Nordheim (F-N) tunneling program and BTB assisted hole injection erase mechanism because the entire channel region programmed by F-N tunneling can be covered by two-sided hole injection from source and drain.  相似文献   

15.
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low-density region at the Dirac point has been difficult because of disorder that leaves the graphene with local microscopic electron and hole puddles. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. Here we use scanning tunnelling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moiré patterns. However, contrary to predictions, this conformation does not lead to a sizeable band gap because of the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared with those on silicon oxide. This leads to charge fluctuations that are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments.  相似文献   

16.
Short chains of porphyrin molecules can mediate electron transport over distances as long as 5-10 nm with low attenuation. This means that porphyrin-based molecular wires could be useful in nanoelectronic and photovoltaic devices, but the mechanisms responsible for charge transport in single oligo-porphyrin wires have not yet been established. Here, based on electrical measurements of single-molecule junctions, we show that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire. Although it is widely accepted that such behaviour is a signature of a thermally assisted incoherent (hopping) mechanism, density functional theory calculations and an accompanying analytical model strongly suggest that the observed temperature and length dependence is consistent with phase-coherent tunnelling through the whole molecular junction.  相似文献   

17.
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with-and perform physical tasks in-the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes ('molecular shuttles') to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.  相似文献   

18.
The size of elements of modern thermomechanical data storage devices approaches the length of molecular free path for gas at room temperature and atmospheric pressure. In such devices, the heat transfer by gas molecules is the main factor defining the sensitivity of thermomechanical reading of data. This paper deals with heat transfer in devices with hardly any collisions between gas molecules. The developed mathematical model and numerical codes are used to estimate the sensitivity of thermomechanical reading of data with the device structure filled with various inert gases such as helium, neon, and argon. It is demonstrated that filling with helium makes it possible to significantly increase this sensitivity. The simulation and estimation results demonstrate that the sensitivity of the existing method of thermomechanical reading of data is not reduced catastrophically when the dimensions of reading cell are reduced at least to dimensions somewhat smaller than the molecular free path for gas.  相似文献   

19.
Prodan E  Car R 《Nano letters》2008,8(6):1771-1777
The tunneling transport theory developed in ref 9 (Phys. Rev. B 2007, 76, 115102) is applied to molecular devices made of alkyl chains linked to gold electrodes via amine groups. Using the analytic expression of the tunneling conductance derived in our previous work, we identify the key physical quantities that characterize the conductance of these devices. By investigating the transport characteristics of three devices, containing four, six, and eight methyl groups, we extract the dependence of the tunneling conductance on the chain's length, which is an exponential decay law in agreement with recent experimental data.  相似文献   

20.
In this paper, we have utilized Au nanoring chains in an SiO2 host to design certain T-and Y-structures, and expanded it to transport and split the electromagnetic energy in integrated nanophotonic devices operating at an optical communication band (λ≈1550 nm). We compared two structures and tried to choose the best one, with lower losses and higher efficiency at the output branches, in order to split and transport the optical energy. Comparing the different types of nanoparticles corroborates that nanorings have an extra degree of tunability in their geometrical components. Meanwhile, nanorings show strong confinement in near-field coupling, less extinction coefficient, and also lower scattering into the far field during energy transportation at the C-band spectrum. Due to the nanoring's particular properties, transportation losses would be lower than in other nanoparticle-based structures like nanospheres, nanorods, and nanodisks. We demonstrate that Au nanorings surrounded by an SiO2 host yield suitable conditions to excite surface Plasmons inside the metal. Comparison between Y-and T-splitters shows that the Y-splitter is a more suitable alternative than the T-splitter, with higher transmission efficiency and lower losses. In the Y-structure, the power ratio (time-averaged power across the surface) is 24.7%, and electromagnetic energy transportation takes place at group velocities in the vicinity of 30% of the velocity of light; transmission losses are γT=3 dB/655 nm and γT=3 dB/443 nm. In this work, we have applied the finite-difference time-domain method (FDTD) to simulate and indicate the properties of structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号