首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ir-base alloys with the fcc and L12-Ir3X (X = Nb, Zr) two-phase structure have been developed as next-generation high-temperature materials. The compressive creep behavior of Ir-Nb and Ir-Zr alloys was investigated at 2073 K under 137 MPa. The effect of addition of the third element, Zr, on the creep behavior of an Ir-Nb alloy was also investigated at 2073 K for 137 MPa. The creep rate became two orders lower by addition of a small amount of Zr. The lattice misfit change between the fcc and L12 two phase by addition of Zr and the deformation structure in binary and ternary alloys after a creep test were also investigated. The creep behavior is discussed in terms of the lattice misfit, precipitate shape, and their distribution. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

2.
Two alloys made by adding 5 or 10 at. pct, respectively, of Ni-18.9 at. pct Al to an Ir-15 at. pct Nb alloy were investigated. The microstructure and compressive strength at temperatures between room temperature and 1800 °C were investigated to evaluate the potential of these alloys for ultra-high-temperature use. Their microstructural evolution indicated that the two alloys formed fcc and L12-Ir3Nb two-phase structures. The fcc and L12 two-phase structures were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The 0.2 pct flow stresses were above 1000 MPa at temperatures up to 1200 °C, about 150 MPa at 1500 °C, and over 100 MPa at 1800 °C. The strength of the quaternary Ir-base alloys at 1200 °C was even higher than that of Ir-base binary and ternary alloys. And the strength of quaternary Ir-Nb-Ni-Al was equivalent to that of the Ir-15 at. pct Nb binary alloy at 1800 °C. The compressive ductility of quaternary (around 20 pct) was improved drastically compared with that of the Ir-base binary alloy (lower than 10 pct) and the ternary Ir-base alloys (about 11 pct). An excellent balance of high-temperature strength and ductility was obtained in the alloy with 10 at. pct Ni-18.9 at. pct Al. The effect of Ni and Al on the strength of the Ir-Nb binary alloy is discussed.  相似文献   

3.
Design of quaternary Ir-Nb-Ni-Al refractory superalloys   总被引:2,自引:0,他引:2  
We propose a method for developing new quaternary Ir-Nb-Ni-Al refractory superalloys for ultra-high-temperature uses, by mixing two types of binary alloys, Ir-20 at. pct Nb and Ni-16.8 at. pct Al, which contain fcc/L12 two-phase coherent structures. For alloys of various Ir-Nb/Ni-Al compositions, we analyzed the microstructure and measured the compressive strengths. Phase analysis indicated that three-phase equilibria—fcc, Ir3Nb-L12, and Ni3Al-L12—existed in Ir-5Nb-62.4Ni-12.6Al (at. pct) (alloy A), Ir-10Nb-41.6Ni-8.4Al (at. pct) (alloy B), and Ir-15Nb-20.8Ni-4.2Al (at. pct) (alloy C) at 1400 °C; at 1300 °C, three phase equilibria—fcc, Ir3Nb, and Ni3Al—existed in alloys A and C and four-phase equilibria—fcc, Ir3Nb, Ni3Al, and IrAl-B2—existed in alloy B. The fcc/L12 coherent structure was examined by using transmission electron microscopy (TEM). At a temperature of 1200 °C, the compressive strength of these quaternary alloys was between 130 and 350 MPa, which was higher than that of commercial Ni-based superalloys, such as MarM247 (50 MPa), and lower than that of Ir-based binary alloys (500 MPa). Compared to Ir-based alloys, the compressive strain of these quaternary alloys was greatly improved. The potential of the quaternary alloys for ultra-high-temperature use is also discussed.  相似文献   

4.
The microstructure and strength at 1473 and 2073 K and creep properties at 2073 K were investigated in three Ir-Nb-Zr alloys with the fcc and L12 two-phase structure. The microstructure and lattice misfit were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). Compression and creep tests were performed, and their deformation structures were observed using SEM and TEM. At 1473 K, the strength of the Ir-Nb-Zr alloys was higher than that of the binary Ir-Nb and Ir-Zr alloys, but they were almost equivalent at 2073 K. However, the ternary alloys showed great improvement on creep at 2073 K. The time for the 2 pct creep strain of the Ir-Nb-Zr alloy was about 100 hours, while it was 1 hour for the binary alloys. The deformation mechanisms for compressive strength and creep resistance in these Ir-Nb-Zr alloys are discussed in terms of the deformation structure. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

5.
The precipitation of Heusler phase (L21: Ni2TiAl) from a supersaturated B2 (TiNi-based) matrix at 600°C and 800°C is studied using transmission electron microscopy (TEM), analytical electron microscopy (AEM), and three-dimensional atom-probe (3DAP) microscopy in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf and Zr) alloys. The B2/L21 two-phase system, with ordered structures based on the bcc lattice, is chosen for its microstructural analogy to the classical γ/γ′ system with an fcc lattice. Knowledge of the temperature-dependent partitioning of alloying elements and their atomic volumes in the B2-TiNi and L21 phases is desired to support design of high-performance shape-memory alloys (SMAs) with controlled misfit strain and transformation temperatures. After aging at 600°C for up to 2000 hours, the L21 precipitates remain fully coherent at a particle diameter of ∼20 nm. The observed effects of a misfit strain of −1.9 pct on the microstructure of the B2/L21 system are similar to those theoretically predicted and experimentally observed for the γ/γ′ system. The similarities are demonstrated in terms of the precipitate shape, spatial distribution, and minimum distance of separation between L21 precipitates. However, all these effects disappear after aging the alloys at 800°C for 1000 hours, when the L21 precipitates become semicoherent at particle diameters above ∼400 nm. A simple analysis of the size evolution of L21 precipitates after an isochronal aging (1000 hours) experiment suggests that they follow coarsening kinetics at 600°C and growth kinetics at 800°C, consistent with the Langer-Schwartz theory of precipitation kinetics, which predicts that a high supersaturation suppresses the growth regime. Microanalysis using AEM and 3DAP microscopy define the TiNi-Ni2TiAl phase boundaries at 800°C and 600°C. At 800°C, Hf and Zr partition to the B2-TiNi, while at 600°C, they partition slightly to the L21 phase, reducing the lattice misfit to −1.7 and −0.011 pct, respectively, and partition strongly to the metastable phase Ti2Ni3. To describe the composition dependence of the lattice parameter of multicomponent B2 and L21 phases, the atomic volumes of Al, Hf, Ni, Ti, and Zr in the B2-TiNi and L21 phases are determined. A simple model is proposed to predict the lattice parameters of these phases in multicomponent systems.  相似文献   

6.
To find a new phase with the potential to improve the high-temperature strength of Ir-based superalloys, the novel idea of introducing silicides into the Ir-Nb binary was implemented. Hypoeutectic Ir-10Nb, eutectic Ir-16Nb, and hypereutectic Ir-25Nb alloys were used as bases, and 5 mol pct Si was added through the removal of Ir. XRD (XRD), scanning electron microscopy (SEM), and electron-probe microanalysis (EPMA) revealed the formation of a three-phase fcc/L12/silicide microstructure in the Ir-Nb-Si ternary after Si addition. The type of silicide formed was dependent on heat-treated temperatures and Nb content. After heat treatment at 1750 °C and 1600 °C, a tie-triangle composed of fcc/L12/silicide (Ir2Si) appeared in the Ir-10Nb-5Si and Ir-16Nb-5Si alloys; in the Ir-25Nb-5Si alloy, an L12 and silicide (Ir,Nb)2Si tie-line was observed. In the as-cast and 1300 °C heat-treated samples, the Ir-10Nb-5Si microstructure changed to a two-phase fcc/silicide structure, while the Ir-16Nb-5Si alloy maintained a three-phase fcc/L12/silicide structure. The Ir-25Nb-5Si alloy, however, had the same phases as that at 1600 °C. Silicides typically continuously or discontinuously distribute along the interdendritic regions or grain boundaries of the fcc or the L12 phase. With the addition of Si, it was found that both the eutectic point and solid solubility of Nb in Ir would shift toward Ir.  相似文献   

7.
Mechanisms of creep deformation in Mg-Sc-based alloys   总被引:2,自引:0,他引:2  
Binary Mg-Sc alloys show only a very weak age-hardening response due to the low diffusivity of Sc in Mg and exhibit inferior creep resistance compared to WE alloys. The addition of a small amount of Mn (<1.5 wt pct) improves their creep behavior markedly, decreasing the minimum creep rates by up to about two orders of magnitude at temperatures above 300 °C compared to WE alloys. This is due to the precipitation of fine Mn2Sc phase basal discs, which are very effective obstacles in controlling creep at temperatures at which cross-slip of basal dislocations and nonbasal slip are the rate controlling mechanisms. The addition of Ce improves the creep resistance even more due to the effect of the grain boundary eutectic. The effect of Mn2Sc discs can still be seen in alloys with a low Sc content (∼1 wt pct) and with the addition of rare earth (RE) elements (Gd, Y, Ce ∼4 wt pct). Very thin hexagonal plates containing RE and Mn, which lie parallel to the basal plane of the Mg matrix, augment the effect of the Mn2Sc precipitates at elevated temperatures (∼250 °C). The triangular arrangement of prismatic plates of metastable or stable phases of Mg-RE systems controls effectively the motion of basal dislocations during the creep of these alloys at elevated or high temperatures. The combined control of basal slip, cross-slip of basal dislocations, and of nonbasal slip in low Sc content alloys ensures minimum creep rates of about one order of magnitude lower than those observed in WE alloys, both at elevated and high temperatures. This article is based on a presentation made in the symposium entitled “Phase Transformations and Deformation in Magnesium Alloys,” which occurred during the Spring TMS meeting, March 14–17, 2004, in Charlotte, NC, under the auspices of ASM-MSCTS Phase Transformations Committee.  相似文献   

8.
The objective of this work is to mimic the microstructure and strengthening mechanisms of Ni-based superalloys in a new group of high-temperature alloys based on the system Pt-Al. The elements Cr and Ni were chosen as further alloying components. Having a face-centered cubic (fcc) crystal structure with an Ll2-ordered and coherently embedded phase, these new alloys should increase creep and corrosion resistance beyond Ni-based superalloys. After arc melting and heat treatment, the alloys were investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the aged condition, the alloy composition 13 at. pct Al, 3 at. pct Cr, 7 at. pct Ni, and balance Pt showed the most promising microstructure with cubical precipitates, 30 pct precipitate volume fraction, and a lattice misfit of about −0.1 pct at room temperature. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

9.
10.
This study is directed toward improvement of the ductility of long-range ordered alloys through control of their ordered crystal structure. A series of ordered alloys was prepared with a base composition of Co3V, where Co was partially replaced with Fe and Ni. The stability and structure of the ordered phases in these (Fe,Co,Ni)3V alloys were characterized by various metallurgical methods. The results indicate that the ordered structure in this alloy system can be controlled by adjusting the electron density, and that the L12 type cubic ordered structure (α′) is stable in the alloys with electron density less than 7.888. The phase relation in the cubic ordered alloys depends on the Fe concentration. For the alloys containing <20 pct Fe, the disordered α solid solution transforms to the cubic α′ ordered on the fcc lattice at temperatures below 1000°C. For the alloys containing >20 pct Fe, the α′ is formed through a peritectoid reaction, namely, α+σ→α′. Tensile tests indicate that the alloys with multilayered hexagonal ordered structure are very brittle, while the alloys with the cubic ordered structure are ductile at room temperature. The ductility of the cubic ordered alloys increases with decreasing Co content. The alloys with <55 pct Co showed dimple type ductile rupture with elongation over 40 pct at room temperature. The correlation of ductility with ordered structure is discussed.  相似文献   

11.
The system V-Pt was investigated over the entire composition range by metallography, X-ray diffraction and electron microprobe studies. There are at least four equilibrium intermediate phases in this system and they are stable to progressively higher temperatures with increasing vanadium concentration. The phases which have been observed are: γ, cubic, Cu3Au type; θ, tetragonal, TiAl3 type; δ, orthorhombic, MoPt2 type; ζ, orthorhombic, AuCd type; and β, cubic, Cr3Si type (A15). The gg phase is possibly metastable. A very stable ribbon-like growth of ζ phase in the fcc platinum terminal solid solution has been observed in alloys containing about 43 at. pct V. The platinum terminal solid solution forms a congruent melting maximum at about 1805°C. A eutectic reaction occurs at 1720° ± 10°C and a peritectic reaction is indicated at 1800° ± 10°C. Vanadium is soluble in the fcc platinum terminal solid solution up to about 57 at. pct at 1720°C. Platinum dissolves only to the extent of about 12 at. pct at 1800°C in bcc α-V.  相似文献   

12.
Diffusion studies were carried out in the Fe-Ni-Al system at 1000 °C using solid-solid diffusion couples assembled with β (B2), γ (fcc) single phase, and (β + γ) two-phase alloys. The diffusion couples were encapsulated in quartz tubes under vacuum and annealed for 48 hours. The diffusion structures were examined by optical and scanning electron microscopy. For all β vs (β + γ) couples, growth of the β phase was observed as the (β + γ) two-phase region recessed with the dissolution of the γ phase. For multiphase couples assembled with two (β + γ) terminal alloys, demixing of the (β + γ) two-phase alloys occurred with the formation of single-phase β and γ layers. The development of an interphase boundary between the (β + β′) two-phase region and the γ phase is reported for the first time for a Fe-Ni-Al diffusion couple assembled with single-phase, β, and γ terminal alloys. Various diffusion structures for the couples were related to their diffusion paths constructed from concentration profiles determined by electron probe microanalysis. Interdiffusion fluxes of individual components were determined directly from the experimental concentration profiles and examined in light of diffusional interactions and the development of zero-flux planes and flux reversals. In addition, the boundaries for the miscibility gap between the ordered β and disordered β′ phases of the Fe-Ni-Al system at 1000 °C were determined with the aid of diffusion couples that developed β and β′ phases in the diffusion zone.  相似文献   

13.
The crack growth behavior of several high temperature nickel-base alloys, under cyclic and static loading, is studied and reviewed. In the oxide dispersion strengthened (ODS) MA 6000 and MA 754 alloys, the high temperature crack propagation exhibited orientation dependence under cyclic as well as under static loading. The creep crack growth (CCG) behavior of cast nickel-base IN-738 and IN-939* superalloys at 850 °C could be characterized by the stress intensity factor,K 1. In the case of the alloy IN-901 at 500 °C and 600 °C,K 1 was found to be the relevant parameter to characterize the creep crack growth behavior. The energy rate line integral,C*, may be the appropriate loading parameter to describe the creep crack growth behavior of the nickel-iron base IN-800H alloy at 800 °C. The creep crack growth data of 1 Cr-Mo-V steel, with bainitic microstructure, at 550 °C could be correlated better by C * than byK 1. This paper is based on a presentation made in the symposium “Crack Propagation under Creep and Creep-Fatigue” presented at the TMS/AIME fall meeting in Orlando, FL, in October 1986, under the auspices of the ASM Flow and Fracture Committee.  相似文献   

14.
Ir-base refractory superalloys for ultra-high temperatures   总被引:1,自引:0,他引:1  
The microstructure and compression strengths of Ir-15 at. pct X (X=Ti, Ta, Nb, Hf, Zr, or V) binary alloys at temperatures between room temperature and 1800 °C were investigated to evaluate the potential of these alloys for ultra-high-temperature use. The fcc and L12 two-phase structures of these alloys were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The strengths of the Ir-Ta, -Nb, -Hf, and -Zr alloys were above 800 MPa at temperatures up to 1200 °C and about 200 MPa at 1800 °C. The strengths of these alloys under 1000 °C are equivalent to or higher than those of the commercially used Ni-base superalloys, MAR-M247 and CMSX-10. The Nb concentration dependence of strength was investigated using a series of Ir-Nb alloys with Nb concentrations from 0 to 25 at. pct. It was found that the Ir-base alloys were strengthened by L12 precipitation hardening. The potential of the Ir-base alloys for ultra-high temperature use is discussed.  相似文献   

15.
Tensile properties up to 1100°F and the creep resistance at 1000°F were correlated with composition for twelve complex developmental titanium alloys with additions of Al, Ga, Sn, Mo, Zr, and Si. Creep resistance for these alloys in the β heat-treated condition was found to be strongly dependent on the totalα stabilizer content and the silicon concentration. The creep activation energy for a Ti-4.5 Al-2 Sn-3 Zr-3 Ga-1 Mo-0.5 Si alloy, established over the 900° to 1100°F temperature range, was about 100 kcal per g-mole. This high creep activation energy is hypothesized to result from dispersion strengthening within theα matrix by the Ti3 X (X = Al, Ga, Sn) phase and pinning of the interplatelet and priorβ grain boundaries by the Zr5Si3 phase. Both phases were identified by transmission electron microscopy in these respective locations. Metallurgical instability, as evidenced by decreased fracture toughness, is also shown to be relatable to the totalα stabilizer content. The activation energy for the embrittlement process is about 45 kcal per g-mole. which approximates that for interdiffusion of gallium inα titanium.  相似文献   

16.
Optimization of Mo-Si-B intermetallic alloys   总被引:1,自引:0,他引:1  
Mo-Si-B intermetallics consisting of the phases Mo3Si and Mo5SiB2, and a molybdenum solid solution (“α-Mo”), have melting points on the order of 2000 °C. These alloys have potential as oxidation-resistant ultra-high-temperature structural materials. They can be designed with microstructures containing either individual α-Mo particles or a continuous α-Mo phase. A compilation of existing data shows that an increase in the volume fraction of the α-Mo phase increases the room-temperature fracture toughness at the expense of the oxidation resistance and the creep strength. If the α-Mo phase could be further ductilized, less α-Mo would be needed to achieve an adequate value of the fracture toughness, and the oxidation resistance would be improved. It is shown that microalloying of Mo-Si-B intermetallics with Zr and the addition of MgAl2O4 spinel particles to Mo both hold promise in this regard. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 15–17, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

17.
Conclusions A study was made of the compressive creep of two-phase alloys of the ZrC-ZrB2 and TiC-TiB2 systems at temperatures of 1700–2420°C and stresses of 5–30 MPa. In the ZrC-ZrB2 system two-phase alloys in a wide range of carbide phase concentrations — from 20 to 70 mole% are characterized by a creep rate exceeding by one to two orders the creep rates of their individual components, while in the TiC-TiB2 system the highest creep rate is exhibited by alloys with carbide contents of 30–50 mole %. The effect of contamination with tungsten carbide on the creep of alloys of the systems investigated was determined. In TiC-TiB2 alloys it is possible for coherent phase boundaries to form and for superplastic creep phenomena to manifest themselves, involving also the operation of threshold mechanisms of plastic deformation.Translated from Poroshkovaya Metallurgiya, No. 12(228), pp. 70–75, December, 1981.  相似文献   

18.
Oxidation behavior of Zr-10Nb-10Ti and Zr-10Nb-20Ti (compositions are in atomic percent) alloys has been investigated in air between 300 °C and 700 °C. Higher Ti content in the alloy enhances the oxidation resistance. The calculated isotherms by PANDAT[1,2] show that 20Ti enters a three-phase (αZr-hcp, βNb-bcc, and βZr-bcc) region at 500 °C, while 10Ti alloy continues to be a two-phase (αZr and βNb) alloy until 550 °C and then enters the three-phase (αZr, βNb, and βZr) region. Both alloys have a single-phase βZr solid solution at 700 °C, which is detrimental for the oxidation resistance. The βNb phase greatly contributes to the oxidation resistance in these two alloys. The common oxidation products have been identified as TiO2, ZrO2, and Nb2O5. Both alloys suffer from pest oxidation at temperatures between 500 °C and 550 °C, respectively (20Ti and 10Ti), up to 700 °C. X-ray diffraction (XRD) indicates strong peaks for monoclinic structure of ZrO2 at temperatures above 600 °C.  相似文献   

19.
The effect of the addition of Si or Mn to ASTM F75 Co-28Cr-6Mo-0.25C alloys on precipitate formation as well as dissolution during solution treatment was investigated. Three alloys—Co-28Cr-6Mo-0.25C-1Si (1Si), Co-28Cr-6Mo-0.25C-1Mn (1Mn), and Co-28Cr-6Mo-0.25C-1Si-1Mn (1Si1Mn)—were heat treated from 1448 K to 1548 K (1175 °C to 1275 °C) for a holding time of up to 43.2 ks. In the case of the as-cast 1Si and 1Si1Mn alloys, the precipitates were M23C6-type carbide, η phase (M6C-M12C–type carbide), and π phase (M2T3X-type carbide with a β-Mn structure), while in the case of the as-cast 1Mn alloy, M23C6-type carbide and η phase were detected. The 1Si and 1Si1Mn alloys required longer heat-treatment times for complete precipitate dissolution than did the 1Mn alloys. During the solution treatment, blocky dense M23C6-type carbide was observed in all the alloys over the temperature range of 1448 K to 1498 K (1175 °C to 1225 °C). At the heat-treatment temperature of 1523 K (1250 °C), starlike precipitates with stripe patterns—comprising M23C6-type carbide and metallic face-centered-cubic (fcc) γ phase—were detected in the 1Si and 1Si1Mn alloys. A π phase was observed in the 1Si and 1Si1Mn alloys heat treated at 1523 K and 1548 K (1250 °C and 1275 °C) and in the 1Mn alloy heat treated at 1548 K (1275 °C); its morphology was starlike-dense. The addition of Si appeared to promote the formation of the π phase in Co-28Cr-6Mo-0.25C alloys at 1523 K and 1548 K (1250 °C and 1275 °C). Thus, the addition of Si and Mn affects the phase and morphology of the carbide precipitates in biomedical Co-Cr-Mo alloys.  相似文献   

20.
Creep processes in magnesium alloys and their composites   总被引:1,自引:0,他引:1  
A comparison is made between the creep characteristics of two squeeze-cast magnesium alloys (AZ 91 and QE 22) reinforced with 20 vol pct Al2O3 short fibers and the unreinforced AZ 91 and QE 22 matrix alloys. The results show the creep resistance of the reinforced materials is considerably improved by comparison with the unreinforced matrix alloys. It is suggested that creep strengthening in these short-fiber composites arises primarily from the existence of a threshold stress and the effect of load transfer. By testing samples to failure, it is demonstrated that the unreinforced and reinforced materials exhibit similar times to failure at the higher stress levels. A detailed microstructural investigation by transmission electron microscopy (TEM) reveals no substantial changes in matrix microstructure due to the presence of the reinforcement. This suggests that direct composite strengthening dominates over indirect effects. This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号