首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
影响Ti合金热稳定性的因素   总被引:3,自引:0,他引:3  
综述了合金元素、环境气氛、相变、涂层等因素对Ti合金热稳定性的影响.  相似文献   

2.
The oxidation kinetics of Titanium alloys containing nominally 5, 40, and 60 weight percent Ta were measured for 16 hr in nitrogen-20% oxygen. In all three alloys at each temperature tested oxidation rates in the nitrogen-oxygen mixture were significantly lower than those previously measured in argon-20% oxygen or pure oxygen. Using X-ray diffraction and electron microprobe a nitrogen rich layer was identified in the scale near the scale/metal interface. This layer apparently acts as an oxygen-diffusion barrier, as demonstrated by the reduced depth of oxygen penetration in the metal relative to identical specimens oxidized in nitrogen free atmospheres.  相似文献   

3.
采用电弧熔铸和机械合金化+热压烧结技术制备晶粒尺寸相差较大的Cr-25Nb合金,研究其在950及1200 ℃空气中的氧化行为。结果表明,熔铸态及机械合金化Cr-25Nb合金氧化后均没有发生Cr的单一外氧化,而形成了以Cr2O3为外层、NbCrO4为内层的双层氧化膜结构;机械合金化Cr-25Nb合金在950及1200 ℃的氧化速度均小于熔铸态合金,特别是在1200 ℃氧化100 h后,熔铸态Cr-25Nb合金的氧化增重是机械合金化合金的2倍多。这主要是因为晶粒细化促进了氧化膜内应力的释放,提高了氧化膜与基体的粘附性  相似文献   

4.
采用热重分析、XRD和SEM等方法研究Ti-Cr合金(0≤w(Cr)≤25%)从室温至1723K的非等温氧化行为及氧化膜的微观结构,探讨Cr元素对Ti-Cr合金抗氧化能力的影响机制。结果表明:当Cr含量小于某一临界值wC时,随着Cr含量的增加合金的抗氧化能力降低;当Cr含量高于wC时,随着Cr含量的增加合金的抗氧化能力提高;当温度高到1000K时,Ti-Cr合金的氧化仍符合抛物线规律,且主要发生钛的氧化;Ti-Cr合金氧化后基体中存在氧扩散层,氧化膜主要为金红石型TiO2,内层氧化膜出现富Cr现象,Cr氧化物的析出提高了Ti-Cr合金的抗氧化能力。金属和合金的着火是一个快速非等温氧化的过程,预测了Ti-Cr合金着火阶段的氧化机制。  相似文献   

5.
High melting Mo-Si-B based alloys exhibit good mechanical properties and oxidation resistance at very high temperatures. The alloy composition Mo-9Si-8B (at.%) shows excellent oxidation behavior between 900°C–1,300°C as a consequence of protective silica scale formation. Below 900°C, a protective oxide layer does not form as a consequence of simultaneous and competitive Mo- and Si-oxide formation. Macro- and microalloying strategies as well as pre-treatment prior to oxidation in air were examined in order to determine their impact on the oxidation performance. Alloying with Cr is a suitable means for protective Cr-oxide scale formation at intermediate temperatures; adding small amounts of reactive elements was found to have a strong impact on the silica scale forming ability. Furthermore, the oxidation behavior can be controlled and enhanced by selective oxidation in oxygen-deficient atmospheres prior to exposure to air.  相似文献   

6.
Kanthal APMT® is an FeCrAlMo alloy optimized for continuous service up to 1,250 °C (~2,300 °F). Rapid solidification powder metallurgy applied on this FeCrAlMo composition provided an oxide dispersion strengthened microstructure. The alloy exhibits an attractive combination of resistance to oxidation and corrosion and excellent form stability. In this study, oxidation and corrosion properties were investigated, as well as mechanical properties at elevated temperature. It was shown that an adherent alumina layer on the alloy surface formed during service that provided excellent resistance to corrosion attacks in most industrial atmospheres and gave great advantages compared to chromia forming high temperature Ni-base alloys in terms of maximum operating temperature and life. Focus was set on oxidation and creep properties but also other important aspects are discussed.  相似文献   

7.
The effects of presulfidation in H2-H2S atmospheres of sulfur activity sufficient to form cobalt and chromium sulfides on the oxidation rates of Co-Cr binary alloys containing 0–25 wt.% Cr and Co-25 wt.% Cr alloys containing 0–2 wt.% C have been investigated. Presulfidation increases the oxidation rate, but the effect is not very dramatic. Carbon additions to the Co-25 wt.% Cr alloy progressively increase the oxidation rate, but not to as great an extent as a simple model based on the reduction of the chromium activity in the alloy. Sulfur released from the preformed sulfides by oxidation diffuses into the alloy precipitating fresh sulfides, there appears to be no outward diffusion of sulfur through the oxide scale. These internal sulfides have a liquid-like morphology in cobalt-base alloys when the oxidation is carried out at 1000°C, as compared to 800°C in corresponding nickel-base alloys. When the sulfide layer produced during the presulfidation is thin, so that oxidation destroys the continuous sulfide layer, the subsequent scale morphologies after oxidation exhibit many features similar to samples subjected to hot corrosion in environments containing sodium sulfate.  相似文献   

8.
Oxidation behaviour of CuZnAl alloys at high temperature The behaviour of CuZnAl alloys in hot oxidizing atmospheres is characterized by the formation of surface layers of good adhesion, the properties of which are determined by aluminium oxide which is partially converted to spinell. The formation of protective layers is enhanced when the alloy contains larger quantities of Zn which - after an initial aluminium depletion of the alloy surface - acts as an oxygen acceptor allowing further aluminium to diffuse to the surface from the bulk of the material, so that the surface layer is improved. The aluminium content required is reduced at increasing zinc contents; at about 22% Zn 3–4% Al are sufficient to form a dense protective layer. These alloys are also most resistant to cyclic to form a dense protective layer. These alloys are also most resistant to cyclic temperature changes during oxidation. The adhesion of the layers may be further improved by addition of rare earth elements.  相似文献   

9.
Improving the efficiency of aerospace gas turbine engines requires materials that can be used at increasingly higher temperatures in aggressive environments. This paper summarizes the current stage of alloy development of Mo–Si–B-based and Co–Re–Cr-based alloys regarding the high-temperature oxidation resistance. Since refractory metals, such as Mo and Re, suffer from catastrophic oxidation, the main task of research is to find alloying elements that improve the oxidation behavior of these alloys. For Mo–Si–B-based alloys, it was observed that an addition of Zr has a significant positive influence on the oxidation resistance by reducing the time necessary for the formation of a protective borosilicate layer. An addition of 0.2 at.% Y improves the viscous properties of the borosilicate increasing the protectiveness of the oxide scale. Macroalloying with Ti yields a strong positive effect on the oxidation behavior and, in addition, notably reduces the density of Mo–Si–B-based alloys. In Co–Re–Cr-based alloys, Cr is included to achieve favorable mechanical properties and to form a protective chromia layer during oxidation. As a consequence of the synergetic effect of Cr and Si, an addition of 2 at.% Si significantly improves the oxidation behavior of the alloy. Al addition further promotes the formation of the protective chromia layer at intermediate temperatures and exhibits the potential of the formation of a protective alumina scale suitable for applications at very high temperatures. The critical evaluation of the complex oxidation behavior of both metallic systems in a broad temperature range gives insight into the underlying fundamental mechanisms, reveals the potentials of particular alloying elements and, thus, guides future development of these material classes.  相似文献   

10.
The influence of the intermetallic ZrV2 phase on the oxidation and corrosion behaviour of zirkonium vanadium alloys The good oxidation resistance of zirkonium and some of its alloys is due to the formation of an oxide layer characterized by good adhesion. Since, however, cracks are formed in such a layer upon prolonged oxidation the corrosion rate can be rather high in the later stages. An improvement of the properties of the oxide layer may be obtained by providing for the incorporation into the scale of atoms able to prevent oxygen diffusion. In the case of vanadium, however, no protective effect is obtained and the corrosion rate even increases as the vanadium content is increased. This phenomenon is due to the poor solubility of vanadium in the zirconium so that the incorporation of vanadium in the scale is inhibited during the initial stages of corrosion. The corrosion mechanism is the same in saturated vapour and NaCl-solution: there are ZrV2-Particles which are not attacked and are embedded in a largely destroyed zirkonium matrix.  相似文献   

11.
Three special alloys likely to be suitable for high-temperature solar receivers were studied for their resistance to oxidation up to a temperature of 1050°C in dry atmospheres of CO2 and air. The alloys were Haynes HR160, Hastelloy X, and Haynes 230, all nickel-based alloys with greater than 20% chromium content. The oxidation rate of specimens cut from sample master alloys was followed by thermogravimetry by continuously monitoring the weight change with a microbalance for a test duration of 10 h. The corrosion resistance was deduced from the total weight increase of the specimens and the morphology of the oxide scale. The surface oxide layer formed (scale) was characterized by scanning electron microscopy and energy dispersive x-ray spectroscopy and in all cases was found to be chromia. Oxidation was analyzed by means of parabolic rate law, albeit in some instances linear breakaway corrosion was also observed. For the temperature range investigated, all alloys corroded more in CO2 than in air due to the formation of a stronger and more protective oxide scale in the presence of air. At 1000°C, the most resistant alloy to corrosion in CO2 was Haynes 230. Alloy Haynes HR160 was the most oxidized alloy at 1000°C in both CO2 and air. Hastelloy X oxidized to a similar extent in CO2 at both 900°C and 1000°C, but in air, it resisted oxidation better at 1000°C than either at 900°C or 1000°C.  相似文献   

12.
《Intermetallics》2006,14(10-11):1168-1174
Titanium aluminides are of great interest for several structural high temperature applications because of their low specific weight (about 4 g/cm3) and their excellent high temperature strength. They could replace the much heavier high temperature steels or Ni-based superalloys (up to 9 g/cm3) which are usually in service. The implementation of this new group of intermetallic alloys in e.g. the aerospace or automotive industry is therefore due to economic and ecologic reasons. The use of TiAl-based alloys is still limited to a temperature of about 750 °C because of their poor oxidation resistance despite of their good mechanical properties which would allow the use at higher temperatures. The oxidation resistance can be improved significantly by small amounts of halogens such as fluorine, chlorine, bromine and iodine (so called halogen effect). A defined dose of these halogens has to be provided at the metal/oxide interface of the component. The halogens promote the selective formation of gaseous Al-halides at temperatures above 700 °C which are oxidised to Al2O3 during their outward diffusion through the naturally grown oxide scale. So finally a protective alumina scale is formed which is stable for long times even under thermocyclic exposure and wet atmospheres. In this paper the results of isothermal and thermocyclic high temperature oxidation tests of technical TiAl-alloys with and without halogen treatment are shown. Additionally the results of high temperature creep tests of halogen treated TiAl-alloys are presented and compared with the untreated alloys.  相似文献   

13.
Oxidation and burning behaviors were studied for CaO added AM50 Mg composites which were manufactured by conventional melting and casting processes without SF6 protective gas. CaO added AM50 Mg composites show the stable oxidation resistance, while AM50 Mg alloys show the poor oxidation resistance. The effects of CaO addition on the burning resistance under ambient, nitrogen and dry air atmospheres were examined for CaO added AM50 Mg composites. With increasing CaO addition, the burning temperature increases under ambient, nitrogen and dry air atmospheres. The burning temperatures of small test specimen under all conditions greatly increase even by 0.3% CaO (mass fraction) addition into AM50 Mg alloys.  相似文献   

14.
The oxidation of Ni-15% CrMo alloys has been studied at 900°C in flowing and static oxygen atmospheres. In flowing atmospheres, molybdenum has no effect: all the alloys oxidize in a protective manner. However, in static atmospheres the oxidation rate of alloys with > 3% Mo eventually accelerates, and catastrophic destruction of the alloy takes place. Under these circumstances a molybdenum-rich oxide layer is detected adjacent to the alloy.When specimens are coated with Na2SO4 prior to oxidation, alloys containing > 3% Mo again suffer catastrophic degradation, in either flowing or static atmospheres, and again a molybdenum-rich oxide layer is observed. This suggests that the principal role of the salt coating is to prevent the escape of MoO3 to the atmosphere.The morphology of the attack in the rapid propagation region is very similar to that obtained in pre-sulphidation/oxidation experiments in the absence of salt and that particular aspect of the reaction is not greatly affected by molybdenum; the aluminium content is more important in determining the nature of the propagation.Attack similar to that exhibited by molybdenum-containing alloys can be obtained with Ni-15%Cr binary alloys in the presence of MoO3 vapour in the atmosphere, and this might suggest that the MoO3 reacted with the Na2SO4 to produce an acid (SO3-rich) salt, leading to acidic fluxing. However, very similar types of attack were obtained when Na2MoO4 was added to the Na2SO4, and this should not have affected the acidity of the salt at all.These experiments suggest that acidic fluxing may not be important in the hot corrosion of alloys of this type (molybdenum-containing) and that when catastrophic corrosion is observed, its initiation is probably due to the formation of a molybdenum-rich oxide layer, molten during the reaction. There appears to be a threshold molybdenum content below which attack does not occur, and this seems insensitive to an increase in the chromium content from 15 to 25%.  相似文献   

15.
The FeCrAl alloys owe their low oxidation rate to the formation of a slow growing α‐aluminium oxide scale. Therefore they are used, for example, as a substrate material in metal‐supported automotive catalytic converters. Increasing exhaust gas temperatures mean that, in addition to the oxidation properties, high temperature mechanical properties should also be improved. Compared to the ferritic FeCrAl alloys, austenitic alloys possess the required high mechanical strength at higher temperatures. However for most commercially available materials the oxidation resistance is not sufficient due to a low aluminium content. High aluminium contents are avoided in austenitic alloys, since they cause severe workability problems, even at aluminium contents, which are below the necessary amount to get a pure alumina scale. The newly developed material Nicrofer 3220 PAl (coated FeNiCrAl) consists of an austenitic FeNi32Cr20 alloy coated with aluminium on both sides. It combines the outstanding oxidation resistance of an alumina forming FeCrAl alloy with the advantage of the high temperature strength of an austenitic alloy. Additionally the oxidation is even lower than the oxidation of the commercial grade Aluchrom YHf (FeCr20Al6)—conventional homogenous FeCrAl. Aluminium coated FeNiCrAl can easily be formed into its final shape. Prior to service, an in situ heat treatment is recommended in order to optimize the properties.  相似文献   

16.
The oxidation behaviour of three industrial Fe---Cr---Al alloys was studied. Two of the products examined were Fe---Cr---Al alloys, one being fabricated by powder metallurgy while the third one was a Fe---Cr---Al---Y alloy. In particular, we have shown that, at high temperature, yttrium may have a detrimental effect on the hot oxidation resistance of this type of alloy. Powder metallurgy does not seem to improve the high temperature behaviour of Fe---Cr---Al alloys as stated by the manufacturer.  相似文献   

17.
General resistance of weld seams with a view to stress corrosion cracking and corrosion fatigue The corrosion of welds is due to thermal effects during welding which give rise to structural changes and, frequently, compositional changes in the transition zone. The welded material is rapidly cooled and may thus be heterogeneous and may present residual stresses resulting in increased susceptibility to selective and stress corrosion. The manganese content is of high importance in low alloy steels, as well as residual martensite or austenite embedded in a ferrite matrix. Low ferrite contents are generally beneficial because they counteract high temperature cracking; however, ferrite contents should be hept below 10% in order to prevent the formation of a continuous network giving rise to selective corrosion. Corrosion susceptibility may also be produced by carbide or carbonitride precipitation in austenitic and ferritic steels and nickel base alloys. Weld zones in aluminium alloys are attacked in rare cases (e.g. by HNO3) and the susceptibility of Ta, Zr and Ti depends from the properties of the protective atmospheres.  相似文献   

18.
AZ91 magnesium alloys containing 0.27–5.22 wt.% Ca, were melted and cast to study the effects of Ca addition on oxidation resistance at elevated temperatures. An ignition temperature test showed that the ignition of AZ91 alloy occurred at about 350–450 °C below the melting point, whereas that of the Ca-containing AZ91 alloys did so at above 650 °C. Weight gain measurements indicated that the oxidation resistance of the AZ91 alloys improved with Ca addition. The oxidation rate was dependent on the oxidation temperature. In the temperature range of 300–400 °C, the oxidation rate increased linearly. By contrast, the weight of 5 wt.% Ca-containing AZ91 alloy increased slowly due to the formation of a protective oxide layer. The oxidized surfaces were analyzed with low-angle XRD, FE-SEM equipped with EDS and AES. Complex structures were found in the oxide layers of the Ca-containing alloys: the outer layer mainly consisted of CaO, which was of uniform thickness, and the inner layer was a mixture of CaO, MgO, and Al2O3. In contrast to the loose and porous MgO formed on the surface of AZ91, the compact and dense oxide layers acted as an effective barrier to the further oxidation of the Ca-containing AZ91 alloys.  相似文献   

19.
《Intermetallics》2000,8(1):19-28
The oxidation kinetics of the Ti3Al based alloys with Nb (0 to 20 at%) or Si (0 to 15 at%) addition was carefully measured at 800 and 900°C, respectively. The oxide scale was characterised by high temperature in-situ XRD, SEM, EPMA and conventional XRD. The weight gains of the alloys were greatly reduced by Nb or Si addition. The improvement of the oxidation resistance in the Ti3Al alloys by Nb addition is attributed to the formation of a compact scale. The formation of a compact scale is favoured not only by doping effect but also by the TiN layer which barriers the outward Al diffusion into the scale to form porous intermixed titania/alumina. Si addition promotes the formation of a compact TiO2 layer in the oxide scale and the formation of SiO2, thus the oxidation resistance of the Ti3Al based alloys is improved. The oxidation behaviour of the alloys with Si addition is a combinative function of the α2-Ti3Al matrix and the Ti5Si3 silicide phase.  相似文献   

20.
Przybilla  W.  Schütze  M. 《Oxidation of Metals》2002,58(3-4):337-359
In the oxidation of TiAl alloys, the role of scale-growth stresses formed during oxidation has, thus far, been unknown. In the present paper the oxide-growth stresses were investigated by the deflection-test method in monofacial oxidation (DTMO) accompanied by acoustic-emission measurements. On unmodified surfaces the growth stresses are compressive and reach levels of around –100 MPa. At the same time, significant acoustic emission occurs indicating that even under isothermal conditions, stresses are relieved by a scale-cracking mechanism. For oxide scales on TiAl surfaces, which had been ion implanted with chlorine before oxidation, a very thin protective alumina layer is formed which, however, develops growth stresses in the range of several GPa, accompanied by intensive acoustic emission. In all stress–time curves, a dynamic situation is observed. This consists of phases of stress relief by scale microcracking and phases of stresses increase due to crack healing and further oxide growth. As a result, the level of stress as a function of oxidation time, is characterized by an oscillating course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号