首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
关联规则Apriori算法   总被引:1,自引:0,他引:1  
阐述了关联规则的基本概念、Apriori算法及其实验结果分析,并描述了Apriori算法的性能瓶颈与改进策略。  相似文献   

2.
关联规则之Apriori算法的改进   总被引:3,自引:0,他引:3  
钱冬云 《福建电脑》2006,(3):99-100
关联规则是数据挖掘的重要研究内容。Apriori算法是关联规则之经典算法。本文在分析经典Apriori算法的基础上.提出了改进型的Apriori算法。新算法采用事务压缩技术,提高了数据挖掘的效率,具有一定的实用性。  相似文献   

3.
陈晓春 《福建电脑》2012,28(4):92-93
对关联规则经典算法中的Apriori算法进行了深入研究与分析,针对其需要反复扫描事务数据库,造成大量I/O开销,影响关联规则挖掘效率这一不足之处,提出了改进,并通过测试程序验证了算法改进的可行性。  相似文献   

4.
一种改进的Apriori挖掘关联规则算法   总被引:4,自引:1,他引:4  
关联规则挖掘可以发现大量数据中项集之间有趣的联系,并已在许多领域得到了广泛的应用。但传统关联规则挖掘很少考虑数据项的重要程度,这些算法认为每个数据对规则的重要性相同,实际挖掘的结果不是很理想。为了挖掘出更具有价值的规则,文中提出了一种加权的关联规则算法,即用频度和利润来标识该项的重要性,然后对经典Apriori算法进行改进。最后用实例对改进后算法进行验证,结果证明改进后算法是合理有效的,能够挖掘出更具价值的信息。  相似文献   

5.
一种改进的Apriori挖掘关联规则算法   总被引:2,自引:0,他引:2  
关联规则挖掘可以发现大量数据中项集之间有趣的联系,并已在许多领域得到了广泛的应用。但传统关联规则挖掘很少考虑数据项的重要程度,这些算法认为每个数据对规则的重要性相同,实际挖掘的结果不是很理想。为了挖掘出更具有价值的规则,文中提出了一种加权的关联规则算法,即用频度和利润来标识该项的重要性,然后对经典Apriori算法进行改进。最后用实例对改进后算法进行验证,结果证明改进后算法是合理有效的,能够挖掘出更具价值的信息。  相似文献   

6.
挖掘关联规则中的Apriori算法的研究   总被引:19,自引:1,他引:19  
文章是基于大型销售数据库研究了关联规则挖掘问题,分析和探讨了Apriori算法,并给出了该算法的实现思想,同时通过例子说明算法的执行过程。  相似文献   

7.
关联规则挖掘Apriori算法的改进   总被引:3,自引:0,他引:3  
在分析研究关联规则挖掘Apriori算法及其若干改进算法的基础上,对Apriori算法做了进一步地改进,提出一种基于条件判断的新思想.改进后的算法根据条件采用了事务压缩与候选项压缩的相结合的方式,减小了不必要的开销,从而提高了挖掘速度.  相似文献   

8.
王琼  曹奎 《福建电脑》2012,28(12):84-86
关联规则的提取是数据挖掘中重要的研究课题,目的在于挖掘事务数据库中有趣的关联,Apriori算法是挖掘关联规则的经典算法。该文对Apriori算法进行研究,发现该算法存在着一些缺点,并对其进行改进,用实例说明这些改进能够正确有效的实现该算法。  相似文献   

9.
本文采用一种基于布尔矩阵的频繁集挖掘算法。该算法直接通过支持矩阵行向量的按位与运算来找出频繁集,而不需要Apriori算法的连接和剪枝,通过不断压缩支持矩阵,不仅节约了存储空间,还提高了算法的效率。  相似文献   

10.
关联规则挖掘Apriori算法的研究与改进   总被引:7,自引:1,他引:6  
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联.Apriori算法是关联规则挖掘中的经典算法.然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点.对Apriori算法的原理及效率进行分析,指出了一些不足,并且提出了改进的Apriori_LB算法.该算法基于新的数据结构,改进了产生候选项集的连接方法.在详细阐述了Apriori_LB算法后,对Apriori算法和Apriori_LB算法进行了分析和比较,实验结果表明改进的Apriori_LB算法优于Apriori算法,特别是对最小支持度较小或者项数较少的事务数据库进行挖掘时,效果更加显著.  相似文献   

11.
该文在对关联规则挖掘中Apriori算法的深入研究和分析的基础上,发现并指出了该算法存在的不足,并对其进行以下三方面改进:改善候选项集支持度的计算方法;缩小候选项集的生成规模;减少对数据库的扫描次数。实验结果表明,改进算法性能得到了明显提高。  相似文献   

12.
该文在对关联规则挖掘中Apriori算法的深入研究和分析的基础上,发现并指出了该算法存在的不足,并对其进行以下三方面改进:改善候选项集支持度的计算方法;缩小候选项集的生成规模;减少对数据库的扫描次数。实验结果表明.改进算法性能得到了明显提高。  相似文献   

13.
一种基于关联规则Apriori算法的改进研究   总被引:1,自引:0,他引:1  
介绍Apriori算法的原理和基础,并对制约Apriori算法效率的瓶颈问题提出一种改进策略,针对该算法的两个缺陷,多次扫描事务数据库并产生大量的候选集,提出一种0-1矩阵的改进算法改变由低维频繁项目集到高维频繁项目集的多次连接运算。此改进算法大大减少了访问数据库的次数,提高系统的运行效率,同时还减少大量的候选集的产生,节约存储空间。  相似文献   

14.
基于改进Apriori算法的关联规则挖掘研究   总被引:2,自引:2,他引:2  
关联规则挖掘研究是数据挖掘研究的一项重要的内容。经典的关联规则提取算法——Apriori算法及其改进算法存在着一些不足,一是会产生大量的候选项目集,二是在扫描数据库时需要很大的I/O负载。通过对关联规则产生过程的实际实验分析发现,可以采取利用频繁k-1项集Lk-1对候选k项集Ck进行预先剪枝、及在扫描数据库过程中忽略对频繁项集的产生无贡献的交易记录的方法来改进关联规则提取的效率。  相似文献   

15.
关联规则挖掘算法Apriori的研究改进   总被引:1,自引:0,他引:1  
  相似文献   

16.
基于改进Apriori算法的关联规则挖掘研究   总被引:2,自引:0,他引:2  
朱其祥  徐勇  张林 《微机发展》2006,16(7):102-104
关联规则挖掘研究是数据挖掘研究的一项重要的内容。经典的关联规则提取算法———Apriori算法及其改进算法存在着一些不足,一是会产生大量的候选项目集,二是在扫描数据库时需要很大的I/O负载。通过对关联规则产生过程的实际实验分析发现,可以采取利用频繁k-1项集Lk-1对候选k项集Ck进行预先剪枝、及在扫描数据库过程中忽略对频繁项集的产生无贡献的交易记录的方法来改进关联规则提取的效率。  相似文献   

17.
论文旨在发现中医诊治中的多维关联关系.介绍了关联规则算法的基本原理,并将关联规则发现算法引入中医诊治关系数据挖掘中.结合Apriori算法设计了中医治疗中“证-症-方-药”之间关联关系的挖掘模型.设计的模型能从海量数据中挖掘出专家治疗疾病的宝贵经验,为临床诊治和科学研究提供依据.  相似文献   

18.
在对Apriori算法分析的基础上,针对该算法存在的两个缺陷,即多次扫描事务数据库和产生大量的候选数据集,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,只扫描1次数据库,改变由低维频繁项目集到高维频繁项目集的多次连接运算,直接从高阶项目集着手寻找最大频繁项目集,从而提高了运算效率。  相似文献   

19.
一种基于Apriori的高效关联规则挖掘算法的研究   总被引:32,自引:3,他引:32  
文章在关联规则挖掘算法Apriori的基础上,分析和探讨了AprioriTid算法,并给出了该算法的实现思想,同时通过实例说明了算法的执行过程。  相似文献   

20.
关联规则挖掘Apriori算法的改进与实现   总被引:11,自引:2,他引:11  
陈文庆  许棠 《微机发展》2005,15(8):155-157
Apriori算法是关联规则挖掘的一个经典算法,提高Apriori算法关联规则挖掘效率的关键是减少候选集的数量。通过分析、研究该算法的基本思想,文中提出利用Hash表存储技术对该算法进行改进,通过删除项Hash表来减少生成候选集的数量,从而提高算法的效率。实验结果表明,该改进算法能有效地提高关联规则挖掘的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号