首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Progress in fabricating Cu(In,Ga)Se2 (CIGS) solar cells with ZnS(O,OH) buffer layers prepared by chemical bath deposition (CBD) is discussed in this paper. Such buffer layers could potentially replace CdS in the CIGS solar cell. Total-area conversion efficiency of up to 18.6% has been reported previously using ZnS(O,OH) prepared by CBD. The reported 100 nm CBD ZnS(O,OH) layer was prepared by at least three consecutive depositions, which would make it a relatively expensive replacement for CdS. The recent development of a ZnS(O,OH) layer that enabled to obtain high-efficiency devices using a single-layer CBD is reported in this paper. A 14.4%-efficient device is obtained by using one-layer CBD ZnS(O,OH) on commercial-grade Shell Solar Cu(In,Ga)(S,Se)2 (CIGSS) absorber and an up to 17.4% device is obtained by using two-layer CBD ZnS(O,OH) on an NREL CIGS absorber.  相似文献   

2.
A new type of solar cell with structure glass/ITO/CdS/PbS/conductive graphite was constructed and studied. Both window (CdS) and absorption (PbS) layers were deposited by means of the chemical bath deposition (CBD) technique. The maximum temperature employed during the solar cell processing was 70 °C and it did not include any post-treatment. In case of the CdS window layer, complexing agents alternative to ammonia were employed in the CBD process and their effects on the CdS films properties were studied. The solar cells are photosensitive in a large spectral range (all visible and near infrared regions); the cell with the area of 0.16 cm2 without any special treatment has shown the values of open-circuit voltage Voc of 290 mV and short circuit current Jsc of 14 mA/cm2 with the efficiency η=1.63% (fill factor FF is 0.36) under illumination intensity of 900 W/m2. It was found that the CBD-made PbS layer has a certain degree of porosity, which favorably affects its applicability in solar cell construction. The possible ways of device optimization, and in particular, the effect of the PbS grain size on its performance are discussed.  相似文献   

3.
CdS layers grown by chemical bath deposition (CBD) are treated in different ways to improve the performance of CdS/CdTe solar cells. It has been found that the open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with CdCl2 before the deposition of CdTe by close spaced sublimation (CSS). A thin CBD CdS (∼80 nm) with bi-layer structure can significantly improve the short circuit current of the CdS/CdTe solar cells.  相似文献   

4.
In this work, the influence of the variation of chemical bath thiourea concentration in the solution for depositing CdS layers upon the spectral response of chemical bath deposition (CBD)-CdS/CdTe solar cells is studied. Although changes in the short and long wavelength range for the spectral response of the cells were observed in dependence of the thiourea concentration, no significant changes were observed in the diffusion length of minority carriers in the CdTe layer, as determined from the constant photocurrent method, when the thiourea concentration is increased in the CdS deposition solution.  相似文献   

5.
Zinc sulfide (ZnS) thin films have been prepared by chemical bath deposition method with improving growth rate and morphology using the mixed complexing agents of ethylenediamine tetra-acetate disodium salt (Na2EDTA) and hexamethylenetetramine (HMTA). The effects of HMTA quantity on the morphological, compositional, optical, structural and electrical properties of ZnS thin films with fixed Na2EDTA concentration have been investigated. ZnS thin films were deposited on glass substrates using aqueous solutions containing zinc acetate dehydrate and thioacetamide in acidic medium (pH 4). Field emission scanning electron microscopy results show that the morphology of a deposited ZnS thin film using HMTA as a complexing agent is rough. However, very uniform and smooth ZnS thin films are obtained using mixed complexing agents of Na2EDTA and HMTA. The growth rate and root mean square of ZnS thin films are improved with increasing HMTA quantities. X-ray diffraction patterns show that all the ZnS thin films are grown as a hexagonal structure without secondary phase (ZnO) regardless of HMTA quantity. Optical band gap energy of ZnS thin films deposited using mixed complexing agents increase from 3.75 to 3.87 eV with increasing quantity of HMTA.  相似文献   

6.
In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by pressing a silicon stamp containing a μm size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm2). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole conductor layer and a Au counter electrode is compared to that of planar substrates. Surprisingly planar films produced better performance than micro-structured films. A simple model implying photoconductive shunting paths revealed by junction breakdown at negative bias under illumination is presented.  相似文献   

7.
Cadmium sulfide films of different thicknesses were deposited by chemical bath deposition (CBD) from a bath containing cadmium chloride, ammonium chloride, ammonium hydroxide and thiourea. The XRD patterns show that the films have a hexagonal phase with a preferential (0 0 2) orientation. The photoluminescence spectra show a defect structure, characteristics of the CdS films obtained by CBD. The electrical behavior in dark and under illumination, the optical properties and the band gap value reported in this work is in agreement with that reported in the literature.  相似文献   

8.
9.
In this paper, growth and characterization of CdS thin films by Chemical Bath Deposition (CBD) technique using the reaction between CdCl2, (NH2)2CS and NH3 in an aqueous solution has been reported. The parameters actively involved in the process of deposition have been identified. A commonly available CBD system has been sucessfully modified to obtain the precious control over the pH of the solution at 90°C during the deposition and studies have been made to understand the fundamental parameters like concentrations of the solution, pH and temperature of the solution involved in the chemical bath deposition of CdS. It is confirmed that the pH of the solution plays a vital role in the quality of the CBD–CdS films. Structural, optical and electrical properties have been analysed for the as-deposited and annealed films. XRD studies on the CBD–CdS films reveal that the change in Cadmium ion concentration in the bath results in the change in crystallization from cubic phase with (1 1 1) predominant orientation to a hexagonal phase with (0 0 2) predominant orientation. The structural changes due to varying cadmium ion concentration in the bath affects the optical and electrical properties. Optimum electrical resistivity, band gap and refractive index value are observed for the annealed films deposited from 0.8 M cadmium ion concentration. The films are suitable for solar cell fabrication. Further on, annealing the samples at 350°C in H2 for 30 min resulted in an increased diffraction intensity as well as shifts in the peak towards lower scattering angles due to enlarged CdS unit cell. This in turn brought about an increase in the lattice parameters and narrowing in the band-gap values. The results are compared with the analysis of previous work.  相似文献   

10.
CdS thin films and bulk precipitates were obtained by chemical bath deposition (CBD) in a well-closed reactor. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, thermal analysis, elemental analysis and leaching have been used to characterize solids and thin films. It has been shown that the proportion of cadmium cyanamide in solids may vary from about 50% to 2% according to physicochemical conditions in solution (time after CBD, ammonia concentration) and that CdO results from CdCN2 after air annealing of thin films. This last step also increases the crystallinity of the films.  相似文献   

11.
CdS thin films were deposited by chemical bath deposition onto glass substrates from chemical bath containing cadmium sulfate, thiourea and ammonia at pH=10.5. The temperature of the bath was maintained at either 75°C or 85°C and under mill stirring. After that the samples were annealed in air at 450°C. Analysis of the as-deposited thin films by energy dispersive X-ray analysis showed that almost all samples have a stoichiometric composition. The morphology of CdS films has been investigated by atomic force microscopy. The structural properties were determined by XRD and a cubic zincblende phase was present in all of the as-grown samples. Evidence of a wurtzite phase appeared after annealing. Grain sizes between 85 and 205 Å were determined from the XRD diffraction peak broadening. The sizes increase with both bath temperature and annealing. The optical properties were studied measuring the transmittance spectra. The room-temperature bandgap energies for each sample were determined from the transmittance by two different methods: extrapolating absorption coefficient and first derivative peak position. The bandgap energy varies from 2.48 to 2.35 eV following closely the quantum confinement dependence of energy against crystallite radius. This shows that the absorption edges of these samples are determined primarily by the grain sizes.  相似文献   

12.
Chalcopyrite thin film solar cells by electrodeposition   总被引:3,自引:0,他引:3  
This paper reviews the state of the art in using electrodeposition to prepare chalcopyrite absorber layers in thin film solar cells. Most of the studies deal with the direct preparation of Cu(In,Ga)Se2 films, and show that the introduction of gallium in the films is now becoming possible from single bath containing all the elements. Electrodeposition can also be used to form precursor films with stacked layer structures, of pure elements or of combinations with binary or even ternary films. Thermal annealing treatments are of dramatic importance to provide suitable electronic quality to the layers. They are often done in the presence of a chalcogen (selenium or sulfur) over pressure and there is a tendency to use rapid thermal processes. Less studies are devoted to complete solar cell formation. Significant progresses have been made in the recent period with several groups achieving cell efficiencies around 8–10% on different substrates. A record efficiency of 11.3% is reported for a cell with an absorber presenting a band gap of 1.47 eV. First results on the manufacturability of the corresponding process to large areas are presented.  相似文献   

13.
Thin film modules based on CIS-technology with power outputs ranging between 5 and 40 W and corresponding circuit aperture area efficiencies between 9.6% and 11% have been introduced recently by Siemens Solar. Current status of production yield and performance is presented demonstrating significantly higher performance than alternative thin film technologies. Further developments have resulted in new champion efficiencies of 12.1% for a large commercial size modules and 14.7% for a small laboratory module.  相似文献   

14.
X-ray fluorescence has turned out to be a very suitable and reliable tool for the characterization of thin film chalcopyrite solar cells. Besides the composition determination in atomic percent the total mass per unit square (mg/cm2) of the analyzed elements and the film thickness can be measured accurately. Furthermore, a real multi-layer analysis allows in addition to determine the CdS, ZnO and Mo thickness simultaneously with the absorber measurement. By the use of etching techniques, information about a vertical composition gradient can also be obtained. This work shows the possibilities and limitations of the X-ray fluorescence technique for the chalcopyrite solar cell characterization and emphasizes the advantages over the widespread electron probe microanalysis.  相似文献   

15.
薄膜太阳电池的研究进展及应用前景   总被引:5,自引:0,他引:5  
阐述了非晶硅薄膜电池、多晶硅薄膜电池、锑化镉薄膜电池、铜铟镓硒薄膜太阳电池和染料敏化TiO2太阳电池的研究现状,简要介绍了我国薄膜太阳电池研究的进展,指出了太阳电池在我国的应用前景。  相似文献   

16.
A CdS film as an antireflective (AR) coating has been successfully deposited on spherical silicon solar cells by chemical bath deposition, which is a novel deposition method of AR coatings for spherical silicon solar cells. The CBD method is a growth method in an aqueous solution and enables film formation for electronic devices with arbitrary shapes. The solar cell performance of the cell with the CdS film showed a 16% increase in short circuit current compared to that without an ARC. The result confirms that the CBD method is useful for the ARC fabrication of spherical silicon solar cells.  相似文献   

17.
Hybrid organic–inorganic all thin film photovoltaic junctions PMeT(Y)/CdS(X) were investigated, where PMeT(Y) is the conducting polymer poly(3-methylthiophene) doped with various anions Y=CF3SO3, ClO4, BF4, PF6, and CdS(X) cadmium sulfide doped with various elements X=Cu, Ni, Al, As and Sb. CdS(X) films were spray deposited on conducting and transparent indium-tin oxide (ITO) glass, and PMeT(Y) films were electrodeposited onto the CdS(X) film to form the junction. The electrochemical investigation of the mechanism of electrodeposition and growth of the PMeT(Y) films by means of chronoamperometry, and of the charge transfer behavior of the PMeT(Y)/CdS(X) junctions by means of cyclic voltammetry revealed a strong effect of the nature of Y and X. The same strong effect of Y was also found with PMeT(Y)/ITO junctions, and may have some generality. It was showed that the best quality of contact between the organic and inorganic phases, from an electrochemical viewpoint and in solution, was obtained with the junction, pointing towards a similarly better photovoltaic performance in solid state. This was indeed the case, and it was found that higher short-circuit current, open-circuit photovoltage and energy conversion efficiency, approaching 4%, could be obtained with this junction.  相似文献   

18.
The deposition of CdS films on ITO/glass substrates from a chemical bath containing cadmium acetate, ammonia, ammonium acetate and thiourea has been carried out with and without small amounts of heteropolyacids (HPA) (phosphotungstic acid (PTA): H3[PW12O40], silicotungstic acid (STA): H4[SiW12O40], phosphomolybdic acid (PMA): H3[PMo12O40]) and isopolyacids (IPA) (tungstic acid (TA): H2WO4 and molybdic acid (MA): H2MoO4) for different deposition times. The chemical, morphological, structural and optical properties of the films have been determined. The composition in sulphur and in cadmium of the films’ surface and volume was determined for various HPA and IPA used in the deposition bath. The HPA and IPA which give the thickest film with the biggest grain size were deduced. The optical transmission at 400 nm of CdS films deposited with STA at short time (20 min) (50%) is higher than those of CdS deposited at longer time (6 h) (7%). The optical transmission of CdS deposited with STA at short time is higher (50%) than that of CdS deposited without STA (20%). The performances of heterojunctions CdS/CdTe solar cells fabricated from CdS films deposited with and without STA and CdTe films deposited without STA have been determined. It was shown that the CdS/CdTe heterojunction solar cells fabricated from CdS films deposited with STA exhibited better photon collection efficiency and solar cell efficiency (η=6%) than CdS/CdTe heterojunction solar cells fabricated from CdS films deposited without STA (η=3.3%).  相似文献   

19.
Solar cells based on polycrystalline semiconductor thin films have great potential for decreasing the cost of photovoltaic energy. However, this kind of solar cells has characteristics very different from those fabricated on crystalline silicon for which the carrier-transport and behavior is clearly known. Instead, for hetero-junction solar cells made on less known polycrystalline materials the design is almost empirical. In this work, several physical aspects related to the behavior of polycrystalline thin film solar cells will be discussed, and some considerations for an adequate design of this kind of solar cells will be made. For example, the recombination at the grain boundaries and its influence on the short circuit current as a function of the crystallite sizes on the active material is considered. Based on this, the appropriate thickness of each layer and their resistivity will be discussed. As an example, these considerations will be applied to CdS/CdTe heterojunction solar cells, taking into account typical properties of CdTe thin films used for solar cells.  相似文献   

20.
Direct epitaxial crystalline silicon thin film (CSiTF) solar cells on low-cost silicon sheets from powder (SSP) ribbons have been prepared using rapid thermal chemical vapour deposition (CVD) growth. The characterisation of CSiTF solar cells was investigated by electron and spectrally resolved light beam induced current (EBIC and SR-LBIC, respectively). All EBIC measurements were performed on both the front-side surface as well as on the cross-section of CSiTF solar cells. The electrical recombination was detected by EBIC and compared with their morphologies. The results of EBIC scan show that recombination centres are situated at grain boundaries (GBs); higher the density of grain, higher the recombination activities (higher contrast). Recombination of different intensity (strong and weak) takes place at vertical GBs. Compared with the high recombination at GBs, the contrast in intragrain is low. The dark contrast of the GBs and intragrain defects is clearly reduced near the surface due to the passivation by hydrogen, which indicates that the minority carrier diffusion length decreases gradually with the depth perpendicular to the surface. The diffusion length was determined by SR-LBIC. The results show that the diffusion length distribution is quite inhomogeneous over the whole cell area. A maximum Leff of about 25 μm and mean values around 15 μm are calculated for the best solar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号