首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Entry into mitosis depends upon activation of the dual-specificity phosphatase Cdc25C, which dephosphorylates and activates the cyclin B-Cdc2 complex. Previous work has shown that the Xenopus polo-like kinase Plx1 can phosphorylate and activate Cdc25C in vitro. In the work presented here, we demonstrate that Plx1 is activated in vivo during oocyte maturation with the same kinetics as Cdc25C. Microinjection of wild-type Plx1 into Xenopus oocytes accelerated the rate of activation of Cdc25C and cyclin B-Cdc2. Conversely, microinjection of either an antibody against Plx1 or kinase-dead Plx1 significantly inhibited the activation of Cdc25C and cyclin B-Cdc2. This effect could be reversed by injection of active Cdc25C, indicating that Plx1 is upstream of Cdc25C. However, injection of Cdc25C, which directly activates cyclin B-Cdc2, also caused activation of Plx1, suggesting that a positive feedback loop exists in the Plx1 activation pathway. Other experiments show that injection of Plx1 antibody into early embryos, which do not require Cdc25C for the activation of cyclin B-Cdc2, resulted in an arrest of cleavage that was associated with monopolar spindles. These results demonstrate that in Xenopus laevis, Plx1 plays important roles both in the activation of Cdc25C at the initiation of mitosis and in spindle assembly at late stages of mitosis.  相似文献   

2.
The Xenopus polo-like kinase 1 (Plx1) is essential during mitosis for the activation of Cdc25C, for spindle assembly, and for cyclin B degradation. Polo-like kinases from various organisms are activated by phosphorylation by an unidentified protein kinase. A protein kinase, polo-like kinase kinase 1 or xPlkk1, that phosphorylates and activates Plx1 in vitro was purified to near homogeneity and cloned. Phosphopeptide mapping of Plx1 phosphorylated in vitro by recombinant xPlkk1 or in progesterone-treated oocytes indicates that xPlkk1 may activate Plx1 in vivo. The xPlkk1 protein itself was also activated by phosphorylation on serine and threonine residues, and the kinetics of activation of xPlkk1 in vivo closely paralleled the activation of Plx1. Moreover, microinjection of xPlkk1 into Xenopus oocytes accelerated the timing of activation of Plx1 and the transition from G2 to M phase of the cell cycle. These results define a protein kinase cascade that regulates several events of mitosis.  相似文献   

3.
Polo-like kinases (Plks), named after the Drosophila gene product polo, have been implicated in the regulation of multiple aspects of mitotic progression, including the activation of the Cdc25 phosphatase, bipolar spindle formation and cytokinesis. Genetic analyses performed in yeast and Drosophila suggest a function for Plks at late stages of mitosis, but biochemical data to support such a function in vertebrate organisms are lacking. Here we have taken advantage of Xenopus egg extracts for exploring the function of Plx1, a Xenopus Plk, during the cell cycle transition from M phase to interphase (I phase). We found that the addition of a catalytically inactive Plx1 mutant to M phase-arrested egg extracts blocked their Ca2+-induced release into interphase. Concomitantly, the proteolytic destruction of several targets of the anaphase-promoting complex and the inactivation of the Cdc2 protein kinase (Cdk1) were prevented. Moreover, the M to I phase transition could be abolished by immunodepletion of Plx1, but was restored upon the addition of recombinant Plx1. These results demonstrate that the exit of egg extracts from M phase arrest requires active Plx1, and they strongly suggest an important role for Plx1 in the activation of the proteolytic machinery that controls the exit from mitosis.  相似文献   

4.
In starfish, fertilization occurs naturally at late meiosis I. In the absence of fertilization, however, oocytes complete meiosis I and II, resulting in mature eggs arrested at the pronucleus stage, which are still fertilizable. In this study, we isolated cDNAs of starfish cyclin A and Cdc2, and monitored extensively the cell cycle dynamics of cyclin A and cyclin B levels and their associated Cdc2 kinase activity, Tyr phosphorylation of Cdc2, and Cdc25 phosphorylation states throughout meiotic and early embryonic cleavage cycles in vivo. In meiosis I, cyclin A was undetectable and cyclin B/Cdc2 alone exhibited histone H1 kinase activity, while thereafter both cyclin A/Cdc2 and cyclin B/Cdc2 kinase activity oscillated along with the cell cycle. Cyclin B-, but not cyclin A-, associated Cdc2 was subjected to regulation via Tyr phosphorylation, and phosphorylation states of Cdc25 correlated with cyclin B/Cdc2 kinase activity with some exceptions. Between meiosis I and II and at the pronucleus stage, cyclin A and B levels remained low, Cdc2 Tyr phosphorylation was undetectable, and Cdc25 remained phosphorylated depending on MAP kinase activity, showing a good correlation between these two stages. Upon fertilization of mature eggs, Cdc2 Tyr phosphorylation reappeared and Cdc25 was dephosphorylated. In the first cleavage cycle, under conditions which prevented Cdc25 activity, cyclin A/Cdc2 was activated with a normal time course and then cyclin B/Cdc2 was activated with a significant delay, resulting in the delayed completion of M-phase. Thus, in contrast to meiosis I, both cyclin A and cyclin B appear to be involved in the embryonic cleavage cycles. We propose that regulation of cyclin A/Cdc2 and cyclin B/Cdc2 is characteristic of meiotic and early cleavage cycles.  相似文献   

5.
The G2-M transition of the cell cycle is triggered by the p34(cdc2)/cyclin B kinase. During the prophase/metaphase transition, the inactive, Thr-14/Tyr-15 phosphorylated form of p34(cdc2) (TP-YP) is modified to an active, Thr-14/Tyr-15 dephosphorylated form (T-Y) by the cdc25 dual-specificity phosphatase. Using highly synchronized starfish oocytes as a cellular model, we show that dephosphorylation in vivo and in vitro occurs in two steps: Thr-14 dephosphorylation precedes Tyr-15 dephosphorylation. The transient intermediate form (T-YP), which can be obtained in vitro by treatment of TP-YP by protein phosphatase 2A, displays low but significant kinase activity. These results raise the possibility that the intermediate form T-YP may be involved in the autocatalytic amplification of the p34(cdc2)/cyclin B complex through phosphorylation/activation of the cdc25 phosphatase and phosphorylation/inactivation of the wee1 kinase.  相似文献   

6.
Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. These CDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.  相似文献   

7.
The DNA replication checkpoint inhibits mitosis in cells that are unable to replicate their DNA, as when nucleotide biosynthesis is inhibited by hydroxyurea. In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that this checkpoint involves the inhibition of Cdc2 activity through the phosphorylation of tyrosine-15. On the contrary, a recent biochemical study indicated that Cdc2 is in an activated state during a replication checkpoint, suggesting that phosphorylation of Cdc2 on tyrosine-15 is not part of the replication checkpoint mechanism. We have undertaken biochemical and genetic studies to resolve this controversy. We report that the DNA replication checkpoint in S. pombe is abrogated in cells that carry the allele cdc2-Y15F, expressing an unphosphorylatable form of Cdc2. Furthermore, Cdc2 isolated from replication checkpoint-arrested cells can be activated in vitro by Cdc25, the tyrosine phosphatase responsible for dephosphorylating Cdc2 in vivo, to the same extent as Cdc2 isolated from cdc25ts-blocked cells, indicating that hydroxyurea treatment causes Cdc2 activity to be maintained at a low level that is insufficient to induce mitosis. These studies show that inhibitory tyrosine-15 phosphorylation of Cdc2 is essential for the DNA replication checkpoint and suggests that Cdc25, and/or one or both of Wee1 and Mik1, the tyrosine kinases that phosphorylate Cdc2, are regulated by the replication checkpoint.  相似文献   

8.
In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.  相似文献   

9.
Recent evidence has suggested that human cyclin-dependent kinase 2 (CDK2) is an essential regulator of cell cycle progression through S phase. CDK2 is known to complex with at least two distinct human cyclins, E and A. The kinase activity of these complexes peaks in G1 and S phase, respectively. The vertebrate CDC2/cyclin B1 complex is an essential regulator of the onset of mitosis and is inhibited by phosphorylation of CDC2 on Thr-14 and Tyr-15. In vitro, CDC2/cyclin B1 is activated by treatment with the members of the Cdc25 family of phosphatases. We found that, like CDC2, CDK2 is also phosphorylated on Thr-14 and Tyr-15 and that treatment of cyclin A or cyclin E immunoprecipitates with bacterially expressed Cdc25M2 (the mouse homolog of human CDC25B) increased the histone H1 kinase activity of these immune complexes 5- to 10-fold. Tryptic peptide mapping demonstrated that Cdc25M2 treatment of cyclin A or cyclin B1 immune complexes resulted in the specific dephosphorylation of Thr-14 and Tyr-15 on CDK2 or CDC2, respectively. Thus, we have confirmed that Cdc25 family members comprise a class of dual-specificity phosphatases. Furthermore, our data suggest that the phosphorylation and dephosphorylation of CDKs on Thr-14 and Tyr-15 may regulate not only the G2/M transition but also other transitions in the cell cycle and that individual cdc25 family members may regulate distinct cell cycle checkpoints.  相似文献   

10.
In Saccharomyces cerevisiae, transient accumulation of G1 cyclin/p34CDC28 (Cdc28p) complexes induces cells to traverse the cell cycle Start checkpoint and commit to a round of cell division. To investigate posttranslational controls that modulate Cdc28p activity during the G1 phase, we have reconstituted cyclin-dependent activation of Cdc28p in a cyclin-depleted G1 extract. A glutathione S-transferase-G1 cyclin chimera (GST-Cln2p) efficiently binds to and activates Cdc28p as a histone H1 kinase. Activation of Cdc28p by GST-Cln2p requires ATP, crude yeast cytosol, and the conserved Thr-169 residue that serves in other organisms as a substrate for phosphorylation by cyclin-dependent protein kinase-activating kinase. This assay may be useful for distinguishing genes that promote directly the posttranslational assembly of active Cln2p/Cdc28p kinase complexes from those that stimulate the accumulation of active complexes via a positive-feedback loop that governs synthesis of G1 cyclins.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.  相似文献   

12.
Replication checkpoint enforced by kinases Cds1 and Chk1   总被引:1,自引:0,他引:1  
Cdc2, the kinase that induces mitosis, is regulated by checkpoints that couple mitosis to the completion of DNA replication and repair. The repair checkpoint kinase Chk1 regulates Cdc25, a phosphatase that activates Cdc2. Effectors of the replication checkpoint evoked by hydroxyurea (HU) are unknown. Treatment of fission yeast with HU stimulated the kinase Cds1, which appears to phosphorylate the kinase Wee1, an inhibitor of Cdc2. The protein kinase Cds1 was also required for a large HU-induced increase in the amount of Mik1, a second inhibitor of Cdc2. HU-induced arrest of cell division was abolished in cds1 chk1 cells. Thus, Cds1 and Chk1 appear to jointly enforce the replication checkpoint.  相似文献   

13.
We have previously demonstrated that UCN-01, a potent protein kinase inhibitor currently in phase I clinical trials for cancer treatment, abrogates G2 arrest following DNA damage. Here we used murine FT210 cells, which contain temperature-sensitive Cdc2 mutations, to determine if UCN-01 abrogates G2 arrest through a Cdc2-dependent pathway. We report that UCN-01 cannot induce mitosis in DNA-damaged FT210 cells at the non-permissive temperature for Cdc2 function. Failure to abrogate G2 arrest was not due to UCN-01-inactivation at the elevated temperature because parental FM3A cells, which have wild-type Cdc2, were sensitive to UCN-01-induced G2 checkpoint abrogation. Having established that UCN-01 acted through Cdc2, we next assessed UCN-01's effect on the Cdc2-inhibitory kinase, Wee1Hu, and the Cdc2-activating phosphatase, Cdc25C. We found that Wee1Hu was indeed inactivated in UCN-01-treated cells, possibly just prior to Cdc2 activation and entry of DNA-damaged cells into mitosis. This inhibition appeared, however, to be a consequence of a further upstream action since in vitro studies revealed purified Wee1Hu was relatively resistant to UCN-01-inhibition. Consistent with such an upstream action, UCN-01 also promoted the hyperphosphorylation (activation) of Cdc25C in DNA-damaged cells. Our results suggest that UCN-01 abrogates G2 checkpoint function through inhibition of a kinase residing upstream of Cdc2, Wee1Hu, and Cdc25C, and that changes observed in these mitotic regulators are downstream consequences of UCN-01's actions.  相似文献   

14.
Checkpoints maintain the order and fidelity of events of the cell cycle by blocking mitosis in response to unreplicated or damaged DNA. In most species this is accomplished by preventing activation of the cell-division kinase Cdc2, which regulates entry into mitosis. The Chk1 kinase, an effector of the DNA-damage checkpoint, phosphorylates Cdc25, an activator of Cdc2. Phosphorylation of Cdc25 promotes its binding to 14-3-3 proteins, preventing it from activating Cdc2. Here we propose that a similar pathway is required for mitotic arrest in the presence of unreplicated DNA (that is, in the replication checkpoint) in fission yeast. We show by mutagenesis that Chk1 functions redundantly with the kinase Cds1 at the replication checkpoint and that both kinases phosphorylate Cdc25 on the same sites, which include serine residues at positions 99, 192 and 359. Mutation of these residues reduces binding of 14-3-3 proteins to Cdc25 in vitro and disrupts the replication checkpoint in vivo. We conclude that both Cds1 and Chk1 regulate the binding of Cdc25 to 14-3-3 proteins as part of the checkpoint response to unreplicated DNA.  相似文献   

15.
16.
The G2 cell cycle checkpoint protects cells from potentially lethal mitotic entry after DNA damage. This checkpoint involves inhibitory phosphorylation of Cdc2 at the tyrosine-15 (Y15) position, mediated in part by the Wee1 protein kinase. Recent evidence suggests that p53 may accelerate mitotic entry after DNA damage and that the override of the G2 checkpoint may play a role in the induction of apoptosis by p53. To determine the biochemical mechanism by which p53 inactivates the G2 checkpoint, the effects of p53 activation on Wee1 expression, Cdc2-Y15 phosphorylation, and cyclin B1-associated Cdc2 kinase activity were examined. Under conditions of either growth arrest or apoptosis, p53 activation resulted in the down-regulation of Wee1 expression and dephosphorylation of Cdc2. A parallel increase in cyclin B1/Cdc2 kinase activity was observed during p53-mediated apoptosis. Negative regulation of the Wee1 expression and Cdc2 phosphorylation by p53 was also evident in thymus tissue from p53+/+ mice but not from p53-/- mice. Inactivation of the G2 checkpoint may contribute to the tumor suppressor activity of p53.  相似文献   

17.
In vivo regulation of the early embryonic cell cycle in Xenopus   总被引:2,自引:0,他引:2  
We report here the first extensive in vivo study of cell cycle regulation in the Xenopus embryo. Cyclin A1, B1, B2, and E1 levels, Cdc2 and Cdk2 kinase activity, and Cdc25C phosphorylation states were monitored during early Xenopus embryonic cell cycles. Cyclin B1 and B2 protein levels were high in the unfertilized egg, declined upon fertilization, and reaccumulated to the same level during the first cell cycle, a pattern repeated during each of the following 11 divisions. Cyclin A1 showed a similar pattern, except that its level was lower in the egg than in the cell cycles after fertilization. Cyclin B1/Cdc2 kinase activity oscillated, peaking before each cleavage, and Cdc25C alternated between a highly phosphorylated and a less phosphorylated form that correlated with high and low cyclin B1/Cdc2 kinase activity, respectively. Unlike the mitotic cyclins, the level of cyclin E1 did not oscillate during embryogenesis, although its associated Cdk2 kinase activity cycled twice for each oscillation of cyclin B1/Cdc2 activity, consistent with a role for cyclin E1 in both S-phase and mitosis. Although the length of the first embryonic cycle is regulated by both the level of cyclin B and the phosphorylation state of Cdc2, cyclin accumulation alone was rate-limiting for later cycles, since overexpression of a mitotic cyclin after the first cycle caused cell cycle acceleration. The activity of Cdc2 closely paralleled the accumulation of cyclin B2, but cell cycle acceleration caused by cyclin B overexpression was not associated with elevation of Cdc2 activity to higher than metaphase levels. Tyrosine phosphorylation of Cdc2, absent during cycles 2-12, reappeared at the midblastula transition coincident with the disappearance of cyclin E1. Cyclin A1 disappeared later, at the beginning of gastrulation. Our results suggest that the timing of the cell cycle in the Xenopus embryo evolves from regulation by accumulation of mitotic cyclins to mechanisms involving periodic G1 cyclin expression and inhibitory tyrosine phosphorylation of Cdc2.  相似文献   

18.
X-PAKs are involved in negative control of the process of oocyte maturation in Xenopus (). In the present study, we define more precisely the events targetted by the kinase in the inhibition of the G2/M transition. We show that microinjection of recombinant X-PAK1-Cter active kinase into progesterone-treated oocytes prevents c-Mos accumulation and activation of both MAPK and maturation-promoting factor (MPF). In conditions permissive for MAPK activation, MPF activation still fails. We demonstrate that a constitutive truncated version of X-PAK1 (X-PAK1-Cter) does not prevent the association of cyclin B with p34(cdc2) but rather prevents the activation of the inactive complexes present in the oocyte. Proteins participating in the MPF amplification loop, including the Cdc25-activating Polo-like kinase are all blocked. Indeed, using active MPF, the amplification loop is not turned on in the presence of X-PAK1. Our results indicate that X-PAK and protein kinase A targets in the control of oocyte maturation are similar and furthermore that this negative regulation is not restricted to meiosis, because we demonstrate that G2/M progression is also prevented in Xenopus cycling extracts in the presence of active X-PAK1.  相似文献   

19.
Complete activation of most cyclin-dependent protein kinases (CDKs) requires phosphorylation by the CDK-activating kinase (CAK). In the budding yeast, Saccharomyces cerevisiae, the major CAK is a 44-kDa protein kinase known as Cak1. Cak1 is required for the phosphorylation and activation of Cdc28, a major CDK involved in cell cycle control. We addressed the possibility that Cak1 is also required for the activation of other yeast CDKs, such as Kin28, Pho85, and Srb10. We generated three new temperature-sensitive cak1 mutant strains, which arrested at the restrictive temperature with nonuniform budding morphology. All three cak1 mutants displayed significant synthetic interactions with loss-of-function mutations in CDC28 and KIN28. Loss of Cak1 function reduced the phosphorylation and activity of both Cdc28 and Kin28 but did not affect the activity of Pho85 or Srb10. In the presence of the Kin28 regulatory subunits Ccl1 and Tfb3, Kin28 was phosphorylated and activated when coexpressed with Cak1 in insect cells. We conclude that Cak1 is required for the activating phosphorylation of Kin28 as well as that of Cdc28.  相似文献   

20.
Cdc2-Cyclin B, the protein kinase that catalyzes the onset of mitosis, is subject to multiple forms of regulation. In the fission yeast Schizosaccharomyces pombe and most other species, a key mode of Cdc2-Cyclin B regulation is the inhibitory phosphorylation of Cdc2 on tyrosine-15. This phosphorylation is catalyzed by the protein kinases Wee1 and Mik1 and removed by the phosphatase Cdc25. These proteins are also regulated, a notable example being the inhibition of Wee1 by the protein kinase Nim1/Cdr1. The temperature-sensitive mutation cdc25-22 is synthetic lethal with nim1/cdr1 mutations, suggesting that a synthetic lethal genetic screen could be used to identify novel mitotic regulators. Here we describe that such a screen has identified cdr2(+), a gene that has an important role in the mitotic control. Cdr2 is a 775 amino acid protein kinase that is closely related to Nim1 and mitotic control proteins in budding yeast. Deletion of cdr2 causes a G2-M delay that is more severe than that caused by nim1/cdr1 mutations. Genetic studies are consistent with a model in which Cdr2 negatively regulates Wee1. This model is supported by experiments showing that Cdr2 associates with the N-terminal regulatory domain of Wee1 in cell lysates and phosphorylates Wee1 in vitro. Thus, Cdr2 is a novel mitotic control protein that appears to regulate Wee1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号