首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixed-mode fracture of a large-grain-size alumina ceramic and a soda-lime glass is investigated. These ceramics are tested using straight-through precracked or notched specimens. The straight-through precrack is introduced by the single-edge-precracked beam method. Precracked or notched specimens are subjected to combined mode I/II or pure mode II fracture, under asymmetric four-point bending, and pure mode I fracture, under symmetric four-point bending. A pure mode II fracture is never achieved in the precracked polycrystalline alumina by the crack-face friction inevitably induced by grain interlocking/bridging. The crack-face friction in sliding mode reduces the local mode II stress intensity factor in the crack-tip region and produces a sizable amount of mode I deformation. Accounting for the contribution of the crack-face friction to the crack-tip local stress intensity factors, K I and K II, in mixed-mode fracture tests, the experimental results of the K I/ K I c versus K II/ K I c envelope and the initial angle of noncoplanar crack extension are in good agreement with the theoretical predictions of the maximum hoop-stress theory.  相似文献   

2.
The fracture toughness of plasma-sprayed Al2O3 coatings in terms of the critical strain energy release rate G Ic was measured using a tapered double cantilever beam (TDCB) approach. The fracture surfaces were examined using a scanning electron microscope (SEM). The measurement yielded the mean G Ic values from 13 to 27 J/m2 for the sprayed Al2O3 coatings at different spray distances. These values agree well with those obtained by the conventional double cantilever beam approach. The dependence of the observed G Ic on spray distance is consistent with that for the lamellar bonding ratio. These results suggest that the TDCB test is a reliable approach for measuring the G Ic of thermal-spray coatings without the crack-length measurement.  相似文献   

3.
The mode I, mode II, and combined mode Imode II fracture behavior of ceria-doped tetragonal zirconia polycrystalline (Ce-TZP) ceramic was studied. The single-edge-precracked-beam (SEPB) samples were fractured using the asymmetric four-point-bend geometry. The ratio of mode I to mode II loading was varied by varying the degree of asymmetry in the four-point-bend geometry. The minimum strain energy density theory best described the mixed-mode fracture behavior of Ce-TZP with the mode I fracture toughness, K IC= 8.2 ± 0.6 MPa·m1/2, and the mode II fracture toughness, KIIC= 8.6± 1.3 MPa·m1/2.  相似文献   

4.
A double-cantilever-beam (DCB) method for determining critical strain energy release rate (GIc) values from plasma-sprayed coatings is described in detail. This approach, involving acoustic emission (AE) methodology, yielded up to 25 results per specimen and was successful in providing cohesive GIc values for plasma-sprayed coatings of Al2O3-2.5 wt% TiO2, Ni-20 wt% Al, as well as two ostensibly identical, 99.5% commercially pure Al2O3 coatings. Adhesive G Ic data from Al2O3-40 wt% TiO2 coatings was also obtained. Results showed a G Ic dependence on crack length, and a number of possibilities, based on fractography, the AE response of the coatings during testing, and crack velocity measurements, are advanced to explain this occurrence. Differences in G Ic values between coatings were found to correlate with differences in powder/coating properties. The DCB method was also used to investigate batch differences and the effect on toughness of sealing an alumina coating. Problems associated with this method of testing are addressed.  相似文献   

5.
Two different zirconia-alumina composites, ZTA-30 (70 wt% Al2O3+30 wt% ZrO2) and ZTA-60 (40 wt% Al2O3+60 wt% ZrO2), with potential for orthopedic applications, were processed in aqueous media and consolidated by slip casting (SC), hydrolysis-assisted solidification (HAS), and gelcasting (GC) from suspensions containing 50 vol% solids loading. For comparison purposes, the same ceramic compositions were also consolidated by die pressing of freeze-dried granules (FG). In the HAS process, 5 wt% of Al2O3 in the precursor mixture was replaced by equivalent amounts of AlN to promote the consolidation of the suspensions. Ceramics consolidated via GC exhibited higher green (three-point bend) strengths (∼17 MPa) than those consolidated by other techniques. Further, these ceramics also exhibited superior fracture toughness and flexural strength properties after sintering for 1 h at 1600°C in comparison with those consolidated by other techniques, including conventional die pressing (FG).  相似文献   

6.
Al2O3–Ni composites were prepared by the reactive hot pressing of Al and NiO. The composites had a two-phase, interpenetrating microstructure and contained ∼35 vol% Ni. They exhibited an impressively high combination of strength and toughness at room temperature; the four-point bending strength was in excess of 600 MPa with a fracture toughness of more than 12 MPa·m1/2. Examination of fracture surfaces showed that Ni ligaments underwent ductile deformation during fracture. SEM analysis revealed knife-edged Ni ligaments with a limited amount of debonding around their periphery (i.e., at the Ni–Al2O3 interface), indicating a strong Ni–Al2O3 bond.  相似文献   

7.
Intermetallic/ceramic composites represent an interesting class of materials for high-temperature structural and functional applications. These materials can be prepared via high-energy milling of pure metals with Al2O3 as well as of aluminum with metal oxides. During subsequent compaction via pressureless sintering, the components react to form dense composites that consist of interpenetrating networks of the ceramic and intermetallic phases. Microstructural investigations, mechanical properties, and resistivity and wear resistance measurements of selected composites are presented. Improved fracture toughness and bending strength, with respect to monolithic Al2O3, have been achieved.  相似文献   

8.
The mechanical properties of Al2O3-based porous ceramics fabricated from pure Al2O3 powder and the mixtures with Al(OH)3 were investigated. The fracture strength of the porous Al2O3 specimens sintered from the mixture was substantially higher than that of the pure Al2O3 sintered specimens because of strong grain bonding that resulted from the fine Al2O3 grains produced by the decomposition of Al(OH)3. However, the elastic modulus of the porous Al2O3 specimens did not increase with the incorporation of Al(OH)3, so that the strain to failure of the porous Al2O3 ceramics increased considerably, especially in the specimens with high porosity, because of the unique pore structures related to the large original Al(OH)3 particles. Fracture toughness also increased with the addition of Al(OH)3 in the specimens with higher porosity. However, fracture toughness did not improve in the specimens with lower porosity because of the fracture-mode transition from intergranular, at higher porosity, to transgranular, at lower porosity.  相似文献   

9.
Crack Bifurcation in Laminar Ceramic Composites   总被引:2,自引:0,他引:2  
Crack bifurcation was observed in laminar ceramic composites when cracks entered thin Al2O3 layers sandwiched between thicker layers of Zr(12Ce)O2. The Al2O3 layers contained a biaxial, residual, compressive stress of ∼2 GPa developed due to differential contraction upon cooling from the processing temperature. The Zr(12Ce)O2 layers were nearly free of residual, tensile stresses because they were much thicker than the Al2O3 layers. The ceramic composites were fabricated by a green tape and codensification method. Different specimens were fabricated to examine the effect of the thickness of the Al2O3 layer on the bifurcation phenomena. Bar specimens were fractured in four-point bending. When the propagating crack encountered the Al2O3 layer, it bifurcated as it approached the Zr(12Ce)O2/ Al2O3 interface. After the crack bifurcated, it continued to propagate close to the center line of the Al2O3 layer. Fracture of the laminate continued after the primary crack reinitiated to propagate through the next Zr(12Ce)O2 layer, where it bifurcated again as it entered the next Al2O3 layer. If the loading was stopped during bifurcation, the specimen could be unloaded prior to complete fracture. Although the residual stresses were nearly identical in all Al2O3 layers, crack bifurcation was observed only when the layer thickness was greater than ∼70 μm.  相似文献   

10.
With multi-wall carbon nanotubes (MWNTs) as reinforcement, a 12 vol% MWNTs/alumina (Al2O3) ceramic composite was obtained by hot pressing. A fracture toughness of 5.55±0.26 MPa·m1/2, 1.8 times that of pure Al2O3 ceramics, was achieved. Experimental results showed that the enveloping of carbon nanotubes (CNTs) with sodium dodecyl sulfate (SDS) is effective in changing the hydrophobicity of CNTs to hydrophilicity and improving the dispersion of CNTs in aqueous solution. Enveloped with SDS, CNTs can be homogeneously mixed with Al2O3 at a microscopic level by heterocoagulation. This mixing method can obviously improve the chemical compatibility between CNTs and Al2O3, which is important for enhancement of interfacial strength between them.  相似文献   

11.
The fracture toughness of 3 mol% Y2O3-ZrO2 (3Y-PSZ) composites containing 10–30 vol% Al2O3 with different particle sizes was investigated. It was found that Al2O3 dispersion of up to 30 vol% increased the fracture toughness by 17% to 30%, and the toughness increase was more remarkable in the composite dispersed with Al2O3 particles of larger sizes. By combining the effects of the dispersion toughening and phase transformation toughening, the toughness change in the present materials was theoretically predicted, which was in good agreement with the experimental data.  相似文献   

12.
Crack Deflection in Ceramic/Ceramic Laminates with Strong Interfaces   总被引:2,自引:0,他引:2  
Crack deflection in electrophoretically deposited Al2O3/ TZ-3Y (3 mol% Y2O3-stabilized tetragonal ZrO2) lamellar composites with strong interfaces is described. The fracture behavior of, and crack paths in, these materials were evaluated using indentation and four-point bend tests. The effects of residual and induced stresses on crack deflection are considered.  相似文献   

13.
Microstructure, phase stability, and mechanical properties of CeO2-partially-stabilized zirconia (12 mol% Ce-TZP) containing 10 wt% Al2O3 and 1.5 wt% MnO were studied in relation to the base Ce-TZP and the Ce-TZP/Al2O3 composite without MnO. The MnO reacted with both CeO2 and Al2O3 to form a new phase of approximate composition CeMnAl11O19. The reacted phase had a magnetoplumbite structure and formed elongated, needlelike crystals. The MnO-doped Ce-TZP/Al2O3 composites sintered at an optimum temperature of 1550°C exhibited high strength (650 MPa in four-point bending) and rising crack-growth-resistance behavior, with fracture toughness increasing from 7.6 to 10.3 MPa.In12 in compact tension tests. These improved mechanical properties were associated with relatively high tetragonal-to-monoclinic transformation temperature ( M s=−42°C) at small grain size (2.5 μm), significant transformation plasticity in mechanical tests (bending, uniaxial tension, and uniaxial compression) and transformation zones at crack tips in compact tension specimens. The transformation yield stress, zone size, and fracture toughness were sensitive to the sintering temperature varied in the range 1500° to 1600°C. Analysis of the transformation zones using Raman microprobe spectroscopy and calculation of zone shielding for the observed zones indicated that a large fraction of the fracture toughness (∼70%) was derived from transformation toughening.  相似文献   

14.
This work presents a novel method for preparing an Al2O3/YAG/ZrO2 ternary eutectic whereby combustion synthesis melt casting has been combined with the ultra-high gravity (UHG) technique. The fabricated product had a relative density of 99.3% of the theoretical one. Phase composition and microstructure analyses indicated that the application of UHG resulted in a metal-free ceramic microstructure with no porosity or microcracks. The microstructure comprises ZrO2 rods dispersed in Al2O3. The product had 17.82 GPa Vickers hardness and 5.51 MPa·m1/2 fracture toughness.  相似文献   

15.
In this work, 800 ppm of Zr4+ dopants were added to Al2O3-5 vol% SiC particle composite. Zr4+ doping led to a weak Al2O3 grain-boundary bonding so that the fracture mode changed from transgranular in undoped composite to intergranular in Zr4+-doped composite. The fracture mode change increased the fracture toughness of the composite. Transmission electron microscopy and energy-dispersive spectroscopy examinations revealed that the weak grain-boundary bonding in the doped composite was caused by the segregation of Zr4+ and Si4+ ions at the Al2O3 grain boundary.  相似文献   

16.
Control of microstructure in the Al2O3/LaAl11O18 system was performed. Elongated alumina grains were formed by doping with small addition of silica, and 20 vol% lanthana- luminate was formed in situ by the reaction of LaAlO3- A12O3 in an alumina matrix. Strengths of over 600 MPa and a high fracture toughness (6 MPa.m1/2) were achieved in the material with both elongated A12O3 grains and LaAl11O18 platelets. Generally antagonistic properties such as strength and fracture toughness have been made compatible in the same ceramic system.  相似文献   

17.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

18.
The effect of Al2O3 and (Ti or Si)C additions on various properties of a (Y)TZP (yttria-stabilized tetragonal zirconia polycrystal)–Al2O3–(Ti or Si)C ternary composite ceramic were investigated for developing a zirconia-based ceramic stronger than SiC at high temperatures. Adding Al2O3 to (Y)TZP improved transverse rupture strength and hardness but decreased fracture toughness. This binary composite ceramic revealed a rapid loss of strength with increasing temperature. Adding TiC to the binary ceramic suppressed the decrease in strength at temperatures above 1573 K. The residual tensile stress induced by the differential thermal expansion between ZrO2 and TiC therefore must have inhibited the t - → m -ZrO2 martensitic transformation. It was concluded that a continuous skeleton of TiC prevented grain-boundary sliding between ZrO2 and Al2O3. In contrast, for the ternary material containing β-SiC in place of TiC, the strength decreased substantially with increasing temperature because of incomplete formation of the SiC skeleton.  相似文献   

19.
The fracture behavior of Al2O3 containing 5 vol% 0.15μm SiC particles was investigated using indentation techniques. A significant increase in strength was achieved by the addition of SiC particles to the base Al2O3. Specifically, the strength increased from 560 MPa for Al2O3 to 760 MPa for the composite samples (average values for unindented hotpressed bars tested in four-point bending). After annealing for 2 h at 1300°C, the average strength of the composite samples increased to about 1000 MPa. Toughness was estimated using indentation-strength data. While there was a slight increase in toughness, the increase was not sufficient to account for the increase in the unindented strength on SiC particle addition. It is suggested that the observed strengthening and apparent toughening were due to a machining-induced compressive surface stress.  相似文献   

20.
Polycrystalline Si was used to clad several advanced ceramic materials such as SiC, Si3N4, sapphire, Al2O3, pyrolytic BN, and Si by a chemical vapor deposition (CVD) process. The thickness of Si cladding ranged from 0.025 to 3.0 mm. CVD Si adhered quite well to all the above materials except Al2O3, where the Si cladding was highly stressed and cracked or delaminated. A detailed material characterization of Si-clad SiC samples showed that Si adherence to SiC does not depend much on the substrate surface preparation; that the thermal cycling and polishing of the samples do not cause delamination; and that, in four-point bend tests, the Si–SiC bond remains intact, with the failure occurring in the Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号