首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discrete-time, linear control systems with specified pointwise-in-time constraints, such as those imposed by actuator saturation, are considered. The constraints are enforced by the addition of a nonlinear ‘reference governor’ that attenuates, when necessary, the input commands. Because the constraints are satisfied, the control system remains linear and undesirable response effects such as instability due to saturation are avoided. The nonlinear action of the reference governor is defined in terms of a finitely determined maximal output admissible set and can be implemented on-line for systems of moderately high order. The main result is global in nature: if the input command converges to a statically admissible input and the initial state of the system belongs to the maximal output admissible set, the eventual action of the reference governor is a unit delay.  相似文献   

2.
This paper presents a novel decentralized filtering adaptive constrained tracking control framework for uncertain interconnected nonlinear systems. Each subsystem has its own decentralized controller based on the established decentralized state predictor. For each subsystem, a piecewise constant adaptive law will generate total uncertainty estimates by solving the error dynamics between the host system and decentralized state predictor with the neglection of unknowns, whereas a decentralized filtering control law is designed to compensate both local and mismatched uncertainties from other subsystems, as well as achieve the local objective tracking of the host system. The achievement of global objective depends on the achievement of local objective for each subsystem. In the control scheme, the nonlinear uncertainties are compensated for within the bandwidth of low‐pass filters, while the trade‐off between tracking and constraints violation avoidance is formulated as a numerical constrained optimization problem which is solved periodically. Priority is given to constraints violation avoidance at the cost of deteriorated tracking performance. The uniform performance bounds are derived for the system states and control inputs as compared to the corresponding signals of a bounded closed‐loop reference system, which assumes partial cancelation of uncertainties within the bandwidth of the control signal. Compared with model predictive control (MPC) and unconstrained controller, the proposed control architecture is capable of solving the tracking control problems for interconnected nonlinear systems subject to constraints and uncertainties.  相似文献   

3.
This paper presents a systematic approach to the design of a nonlinear robust dynamic state feedback controller for nonlinear uncertain systems using copies of the plant nonlinearities. The technique is based on the use of integral quadratic constraints and minimax linear quadratic regulator control, and uses a structured uncertainty representation. The approach combines a linear state feedback guaranteed cost controller and copies of the plant nonlinearities to form a robust nonlinear controller with a novel control architecture. A nonlinear state feedback controller is designed for a synchronous machine using the proposed method. The design provides improved stability and transient response in the presence of uncertainty and nonlinearity in the system and also provides a guaranteed bound on the cost function. An automatic voltage regulator to track reference terminal voltage is also provided by a state feedback equivalent robust nonlinear proportional integral controller. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose a model predictive control (MPC) strategy for accelerated offset-free tracking piece-wise constant reference signals of nonlinear systems subject to state and control constraints. Some special contractive constraints on tracking errors and terminal constraints are embedded into the tracking nonlinear MPC formulation. Then, recursive feasibility and closed-loop convergence of the tracking MPC are guaranteed in the presence of piece-wise references and constraints by deriving some sufficient conditions. Moreover, the local optimality of the tracking MPC is achieved for unreachable output reference signals. By comparing to traditional tracking MPC, the simulation experiment of a thermal system is used to demonstrate the acceleration ability and the effectiveness of the tracking MPC scheme proposed here.  相似文献   

5.
基于信息融合最优估计的非线性离散系统预测控制   总被引:1,自引:0,他引:1  
针对非线性离散系统的二次型最优预测控制问题, 提出了一种基于信息融合最优估计的迭代预测控制算法. 通过融合二次型性能指标函数中包含的未来参考轨迹和控制能量的软约束信息, 以及系统状态方程和输出方程的硬约束信息, 获得协状态序列和控制序列的最优估计. 通过二自由度机器人操作手的转移控制仿真, 表明了该控制算法具有良好的稳定性和鲁棒性.  相似文献   

6.
This paper proposes a method for reducing the trajectory tracking errors of robotic systems in presence of input saturation and state constraints. Basing on a finite horizon prediction of the future evolution of the robot dynamics, the proposed device online preshapes the reference trajectory, minimizing a multi-objective cost function. The shaped reference is updated at discrete time intervals and is generated taking into account the full nonlinear robot dynamics, input and state constraints. A specialized Evolutionary Algorithm is employed as search tool for the online computation of a sub-optimal reference trajectory in the discretized space of the control alternatives. The effectiveness of the proposed method and the online computational burden are analyzed numerically in two significant robotic control problems; furthermore a comparison of the performance provided by this method and an iterative gradient-based algorithms are discussed.  相似文献   

7.
Elmer  Ilya   《Automatica》2002,38(12):2063-2073
This paper proposes a new approach to reference governor design. As in prior literature, the governor accepts input commands and modifies their evolution so that specified pointwise-in-time constraints on state and control variables are satisfied. The new approach applies to general discrete-time and continuous-time nonlinear systems with uncertainties. It relies on safety properties provided by sublevel sets of equilibria-parameterized functions. These functions need not be Lyapunov functions, and the corresponding sublevel sets need not be positively invariant. Technical conditions that capture the bare essentials of what is needed are identified and the usual desirable properties of reference governors are established. The new approach significantly broadens the class of methods available for constructing the nonlinear function that is required in the implementation of the reference governors. This advantage is illustrated in a nonlinear control problem where off-line, computer-based simulation is the basis for constructing the nonlinear function.  相似文献   

8.
This paper addresses the synthesis of a predictive controller for a nonlinear process based on a fuzzy model of the Takagi-Sugeno (T-S) type, resulting in a stable closed-loop control system. Conditions are given that guarantee closed-loop robust asymptotic stability for open-loop bounded-input-bounded-output (BIBO) stable processes with an additive l1-norm bounded model uncertainty. The idea is closely related to (small-gain-based) l1-control theory, but due to the time-varying approach, the resulting robust stability constraints are less conservative. Therefore the fuzzy model is viewed as a linear time-varying system rather than a nonlinear one. The goal is to obtain constraints on the control signal and its increment that guarantee robust stability. Robust global asymptotic stability and offset-free reference tracking are guaranteed for asymptotically constant reference trajectories and disturbances  相似文献   

9.
This paper presents the design of an adaptive fuzzy dynamic surface control for a class of stochastic MIMO discrete-time nonlinear pure-feedback systems with full state constraints using a set of noisy measurements. The design approach is described as follows. The nonlinear uncertainty is approximated by using the fuzzy logic system at the first stage, secondly the proposed adaptive fuzzy dynamic surface control is designed based on a new saturation function for full state constraints, thirdly the number of the adjustable parameters is reduced by using the simplified extended single input rule modules, and finally the simplified weighted least squares estimator is in a simplified structure designed to take the estimates for the un-measurable states and the adjustable parameters. The simulation provides that the proposed approach is effective for the improvement of the system performance.  相似文献   

10.
针对一类具有全状态约束、未建模动态和动态扰动的严格反馈非线性系统,通过构造非线性滤波器,并利用Young’s不等式,提出一种新的有限时间自适应动态面控制方法.引入非线性映射处理全状态约束,将有约束系统变成无约束系统,利用径向基函数逼近未知光滑函数,利用辅助系统产生的动态信号处理未建模动态.对于变换后的系统,利用改进的动态面控制和有限时间方法设计的控制器结构简单,移去现有有限时间控制中出现的“奇异性”问题,可加快系统的收敛速度.理论分析表明,闭环系统中的所有信号在有限时间内有界,全状态不违背约束条件.数值算例的仿真结果表明,所提出的自适应动态面控制方案是有效的.  相似文献   

11.
针对一类含有状态约束和任意初态的严格反馈非线性系统,本文提出了基于二次分式型障碍李雅普诺夫函数的误差跟踪学习控制算法.二次分式型障碍李雅普诺夫函数保证了系统跟踪误差在迭代过程中限制于预设的界内,进而保持状态在约束区间内.引入一级数收敛序列用于处理扰动对系统跟踪性能的影响.构造期望误差轨迹解决了系统的初值问题.经迭代学习...  相似文献   

12.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

13.
This paper investigates a composite neural dynamic surface control (DSC) method for a class of pure‐feedback nonlinear systems in the case of unknown control gain signs and full‐state constraints. Neural networks are utilized to approximate the compound unknown functions, and the approximation errors of neural networks are applied in the design of updated adaptation laws. Comparing the proposed composite approximation method with the conventional ones, a faster and better approximation performance result can be obtained. Combining the composite neural networks approximation with the DSC technique, an improved composite neural adaptive control approach is designed for the considered nonlinear system. Then, together with the Lyapunov stability theory, all the variables of the closed‐loop system are semiglobal uniformly ultimately bounded. The infringements of full state constraints can be avoided in the case of unknown control gain signs as well as unknown disturbances. Finally, two simulation examples show the effectiveness and feasibility of the proposed results.  相似文献   

14.
This article focuses on the adaptive tracking control problem for a class of interconnected nonlinear stochastic systems under full‐state constraints based on the hybrid threshold strategy. Different from the existing works, we propose a novel pre‐constrained tracking control algorithm to deal with the full‐state constraint problem. First, a novel nonlinear transformation function and a new coordinate transformation are developed to constrain state variables, which can directly cope with asymmetric state constraints. Second, the hybrid threshold strategy is constructed to provide a reasonable way in balancing system performance and communication constraints. By the use of dynamic surface control technique and neural network approximate technique, a smooth pre‐constrained tracking controller with adaptive laws is designed for the interconnected nonlinear stochastic systems. Moreover, based on the Lyapunov stability theory, it is proved that all state variables are successfully pre‐constrained within asymmetric boundaries. Finally, a simulation example is presented to verify the effectiveness of proposed control algorithm.  相似文献   

15.
This paper is concerned with the design of an adaptive fuzzy dynamic surface control for uncertain nonlinear pure-feedback systems with input and state constraints using a set of noisy measurements. The design approach is described as follows. The nonlinear uncertainties are approximated by using the fuzzy logic systems at the first stage, secondly the adaptive fuzzy dynamic surface control is introduced to remove the problem of the explosion of complexity for the derivation of the adaptive fuzzy backstepping control, thirdly a new saturation function for state constraints is proposed to design the controllers based on the Lyapunov function, fourthly the number of the adjustable parameters is reduced by using the simplified extended single input rule modules, and finally the weighted least squares estimator to take the estimates for the un-measurable states and the adjustable parameters is in a simplified structure designed. The proposed approach provides effective system performance in the simulation experiment.  相似文献   

16.
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints. Unlike the constraints considered in most existing papers, here the external irregular constraints are considered and a constraints switching mechanism(CSM) is introduced to circumvent the difficulties arising from irregular output constraints. Based on the CSM, a new class of generalized barrier functions are constructed, which allows the control results to be ...  相似文献   

17.
A nonlinear control system that is based entirely on the time-domain representation of dynamic systems is proposed for the control of a simplified pressurized-water-reactor (PWR) nuclear power plant model. The initial stage consists of designing several linear control systems using plant models linearized at preselected operating points. A set-theoretic algorithm is used that explicitly treats the control, control rate, and state constraints. The control objective is to design a system that uses only the available control, at the available rate, in the presence of an input disturbance, without violating the prespecified state constraints. The final stage of the design process uses the gain-scheduling technique to implement the linear control systems a global nonlinear control system. The final design is evaluated through transient response simulations using a simplified nonlinear model of a PWR-type nuclear power plant, with encouraging results  相似文献   

18.
This paper addresses the problem of decentralized tube‐based nonlinear model predictive control (NMPC) for a general class of uncertain nonlinear continuous‐time multiagent systems with additive and bounded disturbance. In particular, the problem of robust navigation of a multiagent system to predefined states of the workspace while using only local information is addressed under certain distance and control input constraints. We propose a decentralized feedback control protocol that consists of two terms: a nominal control input, which is computed online and is the outcome of a decentralized finite horizon optimal control problem that each agent solves at every sampling time, for its nominal system dynamics; and an additive state‐feedback law which is computed offline and guarantees that the real trajectories of each agent will belong to a hypertube centered along the nominal trajectory, for all times. The volume of the hypertube depends on the upper bound of the disturbances as well as the bounds of the derivatives of the dynamics. In addition, by introducing certain distance constraints, the proposed scheme guarantees that the initially connected agents remain connected for all times. Under standard assumptions that arise in nominal NMPC schemes, controllability assumptions, communication capabilities between the agents, it is guaranteed that the multiagent system is input‐to‐state stable with respect to the disturbances, for all initial conditions satisfying the state constraints. Simulation results verify the correctness of the proposed framework.  相似文献   

19.
This note provides a solution to the constrained command tracking problem using reference governors for a class of continuous-time second order linear systems with an input delay and with pointwise-in-time state and control constraints. The reference governor modifies the command to a closed-loop system based on the prediction of whether the system response to constant commands violates the specified constraints. The solution relies on classical control results for second order linear systems and requires only checking whether predicted outputs violate the constraints at a small number of time instants (e.g., four time instants in the single output case). This greatly simplifies the online computation, especially when a reference governor is applied to system models that are (slowly) changing in time. The effectiveness of the proposed method is demonstrated by a numerical example.  相似文献   

20.
This article focuses on the problem of adaptive finite‐time neural backstepping control for multi‐input and multi‐output nonlinear systems with time‐varying full‐state constraints and uncertainties. A tan‐type nonlinear mapping function is first proposed to convert the strict‐feedback system into a new pure‐feedback one without constraints. Neural networks are utilized to cope with unknown functions. To improve learning performance, a composite adaptive law is designed using tracking error and approximate error. A finite‐time convergent differentiator is adopted to avoid the problem of “explosion of complexity.” By theoretical analysis, all the signals of system are proved to be bounded, the outputs can track the desired signals in a finite time, and full‐state constraints are not transgressed. Finally, comparative simulations are offered to confirm the validity of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号