首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(10):671-681
The aim of this experiment was to compare lumbar spinal loads during individual and team lifting tasks. Ten healthy male subjects performed individual lifts with a box mass of 15, 20 and 25 kg and two-person team lifts with a box mass of 30, 40 and 50 kg from the floor to standing knuckle height. Boxes instrumented with force transducers were used to measure vertical and horizontal hand forces, whilst sagittal plane segmental kinematics were determined using a video based motion measurement system. Dynamic L4/L5 torques were calculated and used in a single equivalent extensor force model of the lumbar spine to estimate L4/L5 compression and shear forces. A significant reduction in L4/L5 torque and compression force of approximately 20% was found during team lifts compared to individual lifts. Two main reasons for the reduced spinal loads in team lifting compared to individual lifting were identified: (1) the horizontal hand force (i.e. pulling force) was greater in team lifting, (2) the horizontal position of the hands was closer to the lumbar spine during team lifts. The horizontal hand force and position of the hands had approximately equal contributions in reducing the spinal load during team lifting compared to individual lifting.  相似文献   

2.
《Ergonomics》2012,55(8):1289-1310
This article describes investigations of dynamic biomechanical stresses associated with lifting in stooping and kneeling postures. Twelve subjects volunteered to participate in two lifting experiments each having two levels of posture (stooped or kneeling), two levels of lifting height (350 or 700 mm), and three levels of weight (15,20, or 25 kg). One study examined sagitally symmetric lifting, the other examined an asymmetric task. In each study, subjects lifted and lowered a box every 10 s for a period of 2 min in each treatment combination. Electromyography (EMG) of eight trunk muscles was collected during a specified lift. The EMG data, normalized to maximum extension and flexion exertions in each posture, was used to predict compression and shear forces at the L3 level of the lumbar spine. A comparison of symmetric and asymmetric lifting indicated that the average lumbar compression was greater in sagittal plane tasks; however, both anterior-posterior and lateral shear forces acting on the lumbar spine were increased with asymmetric lifts. Analysis of muscle recruitment indicated that the demands of lifting asymmetrically are shifted to ancillary muscles possessing smaller cross-sectional areas, which may be at greater risk of injury during manual materials handling (MMH) tasks. Model estimates indicated increased compression when kneeling, but increased shear forces when stooping. Increasing box weight and lifting height both significantly increased compressive and shear loading on the lumbar spine. A multivariate analysis of variance (MANOVA) indicated complex muscle recruitment schemes—each treatment combination elicited a unique pattern of muscle recruitment. The results of this investigation will help to evaluate safe loads for lifting in these restricted postures.  相似文献   

3.
The purpose of this study was to determine whether the introduction of larger and heavier beds which were lower to the floor increased the physical stress on employees responsible for room cleaning and bedmaking in the hospitality industry. More specifically, this study assessed the effect of bed size (single, double and king) and bed height (460 and 560 mm) on dynamic and static estimates of L5/S1 compression force and static L5/S1 shear force for six simulated components of the overall bedmaking task. Results confirmed the view that static models severely underestimate the loads on the lumbar spine under inertial lifting conditions, and also indicated that: (i) tasks with the greatest hand loads were not necessarily associated with the greatest spinal loads due to differences in the way each task was performed; (ii) L5/S1 loads produced during bedmaking may exceed recommended safe lifting limits for certain task-size height combinations; and (iii) the use of larger and heavier beds in the hospitality industry imposes increased loads on the lumbar spine. The investigation of alternative work practices designed to minimise loads on the lumbar spine is recommended.  相似文献   

4.
Kingma I  Bosch T  Bruins L  van Dieën JH 《Ergonomics》2004,47(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 - 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.  相似文献   

5.
The objective of this study was to investigate potential associations between an individual's psychophysical maximum acceptable force (MAF) during pushing tasks and biomechanical tissue loads within the lumbar spine. Ten subjects (eight males, two females) pushed a cart with an unknown weight at one push every two minute for a distance of 3.9 m. Two independent variables were investigated, cart control and handle orientation while evaluating their association with the MAF. Dependent variables of hand force and tissue loads for each MAF determination and preceding push trial were assessed using a validated, electromyography-assisted biomechanical model that calculated spinal load distribution throughout the lumbar spine. Results showed no association between spinal loads and the MAF. Only hand forces were associated with the MAF. Therefore, MAFs may be dependent upon tactile sensations from the hands, not the loads on the spine and thus may be unrelated to risk of low back injury.

Practitioner Summary: Pushing tasks have become common in manual materials handling (MMH) and these tasks impose different tissue loads compared to lifting tasks. Industry has commonly used the psychophysical tables for job assent and decision of MMH tasks. However, due to the biomechanical complexity of pushing tasks, psychophysics may be misinterpreting risk.  相似文献   

6.
《Ergonomics》2012,55(11):1565-1588
Biomechanical models used to estimate loads on the lumbar spine often predict internal low back forces for heavy lifts that exceed known tissue tolerances, yet the particular lift caused no apparent damage to the lifter. To deal with this paradox, many researchers have incorporated some form of spinal compression alleviation from intra-abdominal pressure (IAP). The purpose of this work was to re-examine some of the issues involved in the feasibility of IAP to reduce spinal loads during stressful lifts. Questions remain over the trade-off between the beneficial tensile force on the spine, exerted via the diaphragm and pelvic floor when IAP is produced, and the undesirable compressive effects of abdominal muscular force required to maintain the pressure within the abdomen. Various strategies of modelling IAP and its effects on low back loading were employed, Three major differences between this and most previous models of IAP effects were the attempt to quantify the size of abdominal muscle forces and the utilization of a considerably smaller diaphragm cross-sectional area and corresponding IAP moment arm. Abdominal EMG recorded from rectus abdominis, external oblique and internal oblique generally indicated low levels of activity throughout the high loading phase of the lifts. However, model output predicted that the compressive forces generated by the abdominal wall musculature were larger than the beneficial action of those forces thought to alleviate spinal compression via IAP. These results suggest that modelling IAP as a force vector which produces a trunk extensor moment and lumbar disc compression alleviation, without accounting for the compressive effects of abdominal muscle forces required to produce the IAP, is incorrect. This does not exclude a possible role of IAP in assisting the trunk during loading, only that the role of IAP is not modelled properly at present. IAP may indeed play a role in spinal stabilization as yet not well understood.  相似文献   

7.
《Ergonomics》2012,55(8):883-894
Abstract

Several investigations have shown that during physical activity there is a relationship between the magnitude of trunk stresses and increases in intraabdominal pressure (IAP). This study was undertaken to quantify this relationship for moments acting at lumbar level (L4/5) during lifting activities. Fourteen young males performed a series of 60 bimanual lifts in the sagittal plane in 12 different hand positions, while standing in an erect posture. In each hand position, loads ranging from 59 to 706 N were selected in order to apply identical forces at the shoulder, whatever the hand-shoulder distance. The moment about L4/5 was determined through a biomechanical model deriving data from the subject's anthropometry and the photographically recorded posture.

Results showed that IAP was well correlated with the lumbar moment in all the hand positions but one, whose postural configuration put some limitations on the exertion of force. When data from that position were excluded, IAP (kPa) was related to the moment (Nm) at L4/5 level by y=0·079x?1127 (r=0·75). IAP measurement may thus be used as an index of spinal stress in real-life lifting tasks.  相似文献   

8.
《Ergonomics》2012,55(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 – 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.  相似文献   

9.
M E Danz  M M Ayoub 《Ergonomics》1992,35(7-8):833-843
The purpose of this study was to describe and quantify measured hand forces during floor to knuckle lifting of various loads. Hand forces of five subjects were measured with a strain gauge apparatus for normal and fast speeds of lifting at 1, 4, and 8 l/min. The pattern of hand force over time exhibited peaks in force in the shape of a spike for all fast lifts, indicating that subjects did not lift smoothly. For normal speed of lift, only one of the five subjects executed some lifts smoothly, indicating that it may be possible to lift smoothly, but most lifters probably do not. Peaks of horizontal and vertical components of hand force were tabulated by speed of lift, frequency, and load.  相似文献   

10.
《Ergonomics》2012,55(7-8):833-843
The purpose of this study was to describe and quantify measured hand forces during floor to knuckle lifting of various loads. Hand forces of five subjects were measured with a strain gauge apparatus for normal and fast speeds of lifting at 1,4, and 8 l/min. The pattern of hand force over time exhibited peaks in force in the shape of a spike for all fast lifts, indicating that subjects did not lift smoothly. For normal speed of lift, only one of the five subjects executed some lifts smoothly, indicating that it may be possible to lift smoothly, but most lifters probably do not. Peaks of horizontal and vertical components of hand force were tabulated by speed of lift, frequency, and load.  相似文献   

11.
《Ergonomics》2012,55(10):1228-1238
Many studies compared lifting techniques such as stoop and squat lifting. Results thus far show that when lifting a wide load, high back loads result, irrespective of the lifting technique applied. This study compared four lifting techniques in 11 male subjects lifting wide loads. One of these techniques, denoted as the weight lifters' technique (WLT), is characterised by a wide foot placement, moderate knee flexion and a straight but not upright trunk. Net moments were calculated with a 3-D linked segment model and spinal forces with an electromyographic-driven trunk model. When lifting the wide box at handles that allow a high grip position, the WLT resulted in over 20% lower compression forces than the free, squat and stoop lifting technique, mainly due to a smaller horizontal distance between the l5S1 joint and the load. When lifting the wide box at the bottom, none of the lifting techniques was clearly superior to the others.

Statement of Relevance: Lifting low-lying and large objects results in high back loads and may therefore result in a high risk of developing low back pain. This study compares the utility of a WLT, in terms of back load and lumbar flexion, to more familiar techniques in these high-risk lifting tasks.  相似文献   

12.
《Ergonomics》2012,55(2):322-334
Abstract

This study investigated trunk kinematic differences between lifts performed using either one hand (unsupported) or two hands. These effects were studied while beginning the lifts from different asymmetric starting positions and while lifting different load weights. Each subject lifted a box from a lower to an upper platform under one- and two-handed lifting conditions. Subjects wore a lumbar spine electrogoniometer, from which relative motion components were calculated in the trunk's three cardinal planes. Results of this study showed that one-handed lifting resulted in significantly higher ranges of motion in the lateral and transverse planes and greater flexion in the sagittal plane. Back motion characteristics previously found to be associated with low back disorders were all significantly higher for one-handed lifts. The two-handed lift technique, on the other hand, produced overall faster trunk motions in the sagittal plane and equal or larger acceleration and deceleration magnitudes in all planes of motion. Increases in load asymmetry affected trunk kinematics, in that magnitude values for range of motion, velocity and acceleration became much greater with increasingly asymmetric load positions. Increasing the load weight appeared to have less of an effect on trunk kinematics, with increases in position mostly occurring during sagittal and lateral bending. These results suggest that unsupported one-handed lifting loads the spine more than two-handed lifts, due to the added coupling. Applying these results to a previously developed model, one-handed lifting was also found to increase one's risk of suffering a low back disorder.  相似文献   

13.
Seven waste collectors pushed and pulled a two-wheeled container on three different surfaces: flagstones, paving stones, grass. Net torques at the shoulder joint and the lumbar spine as well as the compression and shear forces in the lumbar spine at the L4/L5 level were calculated for the tilting, initial and sustained phases. The lumbar spine compression force was below 1800N and the shear force was below 200 N in all situations. The shoulder torque when pulling with one hand was up to 80 N m. The container weight affected the magnitude of the push/pull forces and the load on the shoulders but not the load on the lumbar spine. The type of surface affected the magnitude of the push/pull forces during initial and sustained phases, and affected the load on the shoulder in the sustained phase. However, it did not affect the compression in the lumbar spine.  相似文献   

14.
Marras WS  Davis KG  Kirking BC  Granata KP 《Ergonomics》1999,42(10):1258-1273
Two-person or team lifting is a popular method for handling materials under awkward or heavy lifting conditions. While many guidelines and standards address safe lifting limits for individual lifting, there are no such limits for team lifting, and these lifts are poorly understood. The literature associated with team lifting offers some interesting paradoxes. Many studies have indicated that people lift less per individual under team conditions compared with one-person lifting. Yet, at least one study has reported an increase in team-lifting capacity when subjects were height-matched. The current study explored the spine loading characteristics of one- and two-person lifting teams when subjects lifted under several sagittally symmetric and asymmetric conditions. Spine compression was lower for two person lifts for a given weight, while lifting in sagittally symmetric conditions whereas lateral shear became much greater for two-person lifts under asymmetric lifting conditions. This study has linked these changes to differences in trunk kinematic patterns adopted during one- versus two-person lifting.  相似文献   

15.
《Ergonomics》2012,55(10):1258-1273
Two-person or team lifting is a popular method for handling materials under awkward or heavy lifting conditions. While many guidelines and standards address safe lifting limits for individual lifting, there are no such limits for team lifting, and these lifts are poorly understood. The literature associated with team lifting offers some interesting paradoxes. Many studies have indicated that people lift less per individual under team conditions compared with one-person lifting. Yet, at least one study has reported an increase in team-lifting capacity when subjects were height-matched. The current study explored the spine loading characteristics of one- and two-person lifting teams when subjects lifted under several sagittally symmetric and asymmetric conditions. Spine compression was lower for two person lifts for a given weight, while lifting in sagittally symmetric conditions whereas lateral shear became much greater for two-person lifts under asymmetric lifting conditions. This study has linked these changes to differences in trunk kinematic patterns adopted during one- versus two-person lifting.  相似文献   

16.
This study investigated the effect of posture on lifting performance. Twenty-three male soldiers lifted a loaded box onto a platform in standing and seated postures to determine their maximum lift capacity and maximum acceptable lift. Lift performance, trunk kinematics, lumbar loads, anthropometric and strength data were recorded. There was a significant main effect for lift effort but not for posture or the interaction. Effect sizes showed that lumbar compression forces did not differ between postures at lift initiation (Standing 5566.2?±?627.8 N; Seated 5584.0?±?16.0) but were higher in the standing posture (4045.7?±?408.3 N) when compared with the seated posture (3655.8?±?225.7 N) at lift completion. Anterior shear forces were higher in the standing posture at both lift initiation (Standing 519.4?±?104.4 N; Seated 224.2?±?9.4 N) and completion (Standing 183.3?±?62.5 N; Seated 71.0?±?24.2 N) and may have been a result of increased trunk flexion and a larger horizontal distance of the mass from the L5-S1 joint.

Practitioner Summary: Differences between lift performance and lumbar forces in standing and seated lifts are unclear. Using a with-in subjects repeated measures design, we found no difference in lifted mass or lumbar compression force at lift initiation between standing and seated lifts.  相似文献   


17.
M J?ger  A Luttmann 《Ergonomics》1989,32(1):93-112
A dynamic biomechanical human model is presented which allows the quantification of mechanical parameters such as torque, compressive and shear forces, and pressure at the lumbar intervertebral discs. The human model comprises a total of 19 body segments. Various trunk flexions can be analysed due to the provision of 5 joints at the level of the 5 lumbar intervertebral discs. The influence of intraabdominal pressure on spinal load is considered. The inclusion of the influences of gravity and inertia permits the analysis of both static body postures and dynamic body movements. Since the model is 3-dimensional, the lumbar stress can be calculated during both symmetrical tasks in the median sagittal plane as well as during non-symmetrical ones. The influences on spinal stress of trunk inclination and the position of an external load relative to the body are quantified for various load weights up to 50 kg. The torque at the lumbo-sacral joint L5-S1 lies, dependent on posture and load lever-arm, within the range between 0 and 500 Nm; the compressive force on L5-S1 lies within the range between 0.4 and 10 kN, and the shear force at L5-S1 between 0.2 and 0.9 kN. The influences of lift velocity and jerky movement on lumbar stress are quantified. Simulated humpback and hollow-back postures are studied. The compressive forces at the 5 lumbar intervertebral discs are compared. The validity of the model is examined by comparing the model calculations with the intradiscal pressure measurements taken from the literature. Strength tests on lumbar intervertebral discs and vertebrae are collated from the literature in order to assess the lumbar stress during load lifting. The lumbar ultimate compression strength varies within a wide range. The mean value for a total of 307 lumbar segments amounts to 4.4 kN, the standard deviation to 1.9 kN. In conclusion, lumbar compressive force values during lifting fall within the same range as the strength values for the human lumbar spine.  相似文献   

18.
《Ergonomics》2012,55(12):1754-1765
Abstract

The objective of this study was to determine how simulated manual wheelchair pushing influences biomechanical loading to the lumbar spine and shoulders. Sixty-two subjects performed simulated wheelchair pushing and turning in a laboratory. An electromyography-assisted biomechanical model was used to estimate spinal loads. Moments at the shoulder joint, external hand forces and net turning torque were also assessed. Multiple linear regression techniques were employed to develop biomechanically based wheelchair pushing guidelines relating resultant hand force or net torque to spinal load. Male subjects experienced significantly greater spinal loading (p < 0.01), and spine loads were also increased for wheelchair turning compared to straight wheelchair pushing (p < 0.001). Biomechanically determined maximum acceptable resultant hand forces were 17–18% lower than psychophysically determined limits. We conclude that manual wheelchair pushing and turning can pose biomechanical risk to the lumbar spine and shoulders. Psychophysically determined maximum acceptable push forces do not appear to be protective enough of this biomechanical risk.

Practitioner Summary: This laboratory study investigated biomechanical risk to the low back and shoulders during simulated wheelchair pushing. Manual wheelchair pushing posed biomechanical risk to the lumbar spine (in compression and A/P shear) and to the shoulders. Biomechanically determined wheelchair pushing thresholds are presented and are more protective than the closest psychophysically determined equivalents.  相似文献   

19.
This study investigated the differences in peak external hand forces and external moments generated at the L5/S1 joint of the low back due to maneuvering loaded floor-based and overhead-mounted patient lifting devices using one and two caregivers. Hand forces and external moments at the L5/S1 joint were estimated from ground reaction forces and motion capture data. Caregivers gave ratings of perceived exertion as well as their opinions regarding overhead vs. floor lifts. Use of overhead lifts resulted in significantly lower back loads than floor lifts. Two caregivers working together with a floor lift did not reduce loads on the primary caregiver compared to the single-caregiver case. In contrast, two-caregiver operation of an overhead lift did result in reduced loads compared to the single-caregiver case. Therefore, overhead lifts should be used whenever possible to reduce the risk of back injury to caregivers. The use of two caregivers does not compensate for the poorer performance of floor lifts.  相似文献   

20.
The study documented three-dimensional spinal loading during lifting from an industrial bin. Two lifting styles and two bin design factors were examined in Phase I. The lifting style measures in Phase I were one hand versus two hand and standing on one foot versus two feet. The bin design variables were region of load in the bin and bin height. The Phase II study examined one-handed lifting styles with and without supporting body weight with the free hand on the bin as well as region and the number of feet. Twelve male and 12 female subjects lifted an 11.3 kg box from the bin. Spinal compression, lateral shear and anterior - posterior shear forces were estimated using a validated EMG-assisted biomechanical model. Phase I results indicated that the bin design factor of region had the greatest impact on spinal loading. The upper front region minimized spinal loading for all lifting styles. Furthermore, the lifting style of two hands and two feet minimized spinal loading. However, comparing Phase I two-handed lifting with Phase II one-handed supported lifting, the one-handed supported lifting techniques had lower compressive and anterior - posterior shear loads in the lower regions as well as the upper back region of the bin. A bin design that facilitates lifting from the upper front region of the bin reduces spinal loading more effectively than specific lifting styles. Furthermore, a bin design with a hand hold may facilitate workers using a supported lifting style that reduces spinal loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号