首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters. A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated  相似文献   

2.
An “office-based surgical device” is a kind of device which aims to shift the conventional surgical procedures from the operating room to the confines of the doctor’s/surgeon’s office as well as to assist the surgeons to carry out the surgeries on the patients automatically or semi-automatically. In this paper, an office-based surgical device suitable for patients with Otitis Media with Effusion (OME) is introduced. Due to the office-based design, it is not possible to subject the patient to general anesthesia, i.e., the patient is awake during the surgical treatment with the device. To ensure a high success rate and safety, it is very important that the relative motion and the contact force between the tool set of the device and the tympanic membrane (TM) can be stabilized. To this end, a control scheme using force and vision feedback is proposed. The force feedback controller is a PID-based (proportional-integral-derivative) controller, which is designed for force tracking. The vision feedback controller is a vision-based motion compensator, which is designed to measure and compensate the head motion since it is equivalent to TM motion. Furthermore, the control scheme is implemented and tested in a mock-up system. The experimental results show that the proposed composite controller can achieve much better performance in force tracking than a pure force feedback controller. The performance can at least improve by 20% after augmenting the motion compensator, which helps the system to stabilize the relative motion indirectly and maintain the contact force precisely.  相似文献   

3.
《Mechatronics》2006,16(3-4):209-219
The paper describes a practical approach to investigate and develop a hybrid iterative learning control scheme with input shaping. An experimental flexible manipulator rig and corresponding simulation environment are used to demonstrate the effectiveness of the proposed control strategy. A collocated proportional-derivative (PD) controller utilizing hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate iterative learning control with acceleration feedback and genetic algorithms (GAs) for optimization of the learning parameters and a feedforward controller based on input shaping techniques for control of vibration (flexible motion) of the system. The system performance with the controllers is presented and analysed in the time and frequency domains. The performance of the hybrid learning control scheme with input shaping is assessed in terms of input tracking and level of vibration reduction. The effectiveness of the control schemes in handling various payloads is also studied.  相似文献   

4.
The random vibration control of an inverter-fed electrodynamic shaker is presented in this paper. First, the dynamic model of the shaker is found and a current-controlled pulsewidth modulation inverter is designed and implemented. The feedback controller is augmented with a command feedforward controller and a disturbance feedforward controller to let the armature exciting current have low harmonic content and possess excellent waveform tracking performance. Then, an acceleration controller and its random vibration command are arranged. In the proposed acceleration control scheme, a command feedforward controller and a robust disturbance feedforward controller are also employed to let the shaker have close random acceleration command waveform tracking control performance, and the performance be insensitive to the system parameter variations. It follows that the acceleration control with desired frequency response in a vibration test could be achieved through properly setting the command signal. The effectiveness of the proposed control scheme is verified by simulation and measured results  相似文献   

5.
Concerns control of an electrodynamic shaker for vibration-proof testing of electronic products. An acceleration controller for such a shaker fed by a switching-mode power amplifier is presented in this paper. First, the dynamic model of the shaker system is found and a high-performance current-controlled pulsewidth modulated inverter is designed and implemented. Then, a sophisticated acceleration control scheme being capable of waveform and magnitude regulation controls is proposed to lessen the undesired harmonic vibration caused by switching-mode driven power. In acceleration waveform control, the feedback controller is augmented with a feedforward controller and robust controller for obtaining excellent waveform tracking performance over a wide frequency range. As to the magnitude regulation control, the amplitude of the sinusoidal acceleration is accurately controlled to be equal to the setting value. Theoretical basis, practical consideration, and implementation of the proposed controllers are described in detail. Good current and acceleration control characteristics of the designed shaker are demonstrated by some measured results  相似文献   

6.
This paper presents an integrated scheme for motion control and internal force control for a redundantly actuated omnidirectional wheeled mobile robot. The interactive forces between a robot body and its wheels can be reduced into two orthogonal parts: motion-induced forces and internal forces. First, it is shown that the internal forces reside in the null space of the coefficient matrix of the interactive forces and do not affect robotic motion. However, these forces caused by motor torques should be minimized as much as possible to increase the energy efficiency and life span of joint components. With different goals, the control for motion and the control for internal forces can be designed separately. Here, both kinematic and dynamic models of the forces are proposed. A proportional differential plus controller regulates the motion and an inverse dynamic controller tracks it. Then, to minimize the internal forces, an integral feedback internal force controller is used. The motion controller guarantees the robotic motion while the internal force controller minimizes the internal force occurring during robot motion. Simulation results verify the effectiveness of the proposed schemes.  相似文献   

7.
This paper presents the end-effector pose error modeling and motion accuracy analysis of a planar 2PRP-PPR parallel manipulator with an unsymmetrical (U-shape) fixed base. The error model is established based on the screw theory with considerations of both configuration (geometrical) errors and joint clearances. It also proposes a robust cascaded control scheme for the end-effector pose (task-space) error correction in trajectory-tracking of the manipulator due to mechanical inaccuracies. The proposed control scheme uses redundant sensor feedback, i.e., individual active joint displacements and velocities and, end-effector positions and orientation are obtained as feedback signals using appropriate sensors. To demonstrate the efficacy and show complete performance of the proposed controller, real-time experiments are accomplished on an in-house fabricated planar 2PRP-PPR parallel manipulator.  相似文献   

8.
A stable transition controller for constrained robots   总被引:1,自引:0,他引:1  
This paper addresses the problem of contact transition from free motion to constrained motion for robots. Stability of transition from free motion to constrained motion is essential for successful operation of a robot performing general tasks such as surface following and surface finishing. Uncertainty in the location of the constraint can cause the robot to impact the constraint surface with a nonzero velocity, which may lead to bouncing of the robot end-effector on the surface. A new stable discontinuous transition controller is proposed to deal with contact transition problem. This discontinuous transition control algorithm is used when switching from free motion to constrained motion. Control algorithm for a complete robot task is developed. Extensive experiments with the proposed control strategy were conducted with different levels of constraint uncertainty and impact velocities. Experimental results show much improved transition performance and force regulation with the proposed controller. Details of the experimental platform and typical experimental results are given  相似文献   

9.
This paper presents the design and implementation of a hybrid force/motion control scheme on a six-degrees-of-freedom robotic manipulator employing a gain-scheduled linear parameter-varying (LPV) controller. A nonlinear dynamic model of the manipulator is obtained and the unknown parameters are estimated. The manipulator is decomposed into an inner and a wrist submodel, and a practical way is proposed to investigate the coupling between them. The motion control part of the hybrid controller which is the main focus of this paper is formed by a combination of an LPV controller and a model-based inverse dynamics controller for the inner submodel and the wrist joints, respectively. A quasi-LPV model with a reduced number of scheduling parameters is derived for the inner submodel, and a polytopic LPV gain-scheduled controller is synthesized in a two-degrees-of-freedom structure including feedback and feedforward parts, which is augmented by a friction compensation term. A PD controller with a feedforward path is designed to control the interaction force. The proposed hybrid force/motion scheme is implemented on the 6-DOF CRS A465 robotic manipulator to perform a writing task. Comparison of the results with those of a hybrid force/motion controller with a plain model-based inverse dynamics motion control and the same force control shows that the proposed controller improves the position tracking performance significantly.  相似文献   

10.
In this paper, we propose a simple controller for set-point control of robot manipulators. The structure of this controller is composed by a saturated proportional-saturated derivative feedback plus gravity compensation. Such a control scheme has two practical features. First, for all desired joint positions, this controller delivers torques inside prescribed limits according to the actuator capability and second, the steady-state position errors owing to static friction can be arbitrarily reduced. In the case of absence of friction, we show global asymptotic stability of the closed-loop system. The performance of the proposed controller is illustrated via experiments on a two-degrees-of-freedom (2-DOF) direct-drive robot system  相似文献   

11.
This paper addresses the joint space control problem of a 6-DOF (degree of freedom) parallel hydraulic manipulator. High precision motion control of a six-degree parallel manipulator is hardly achieved due to the existence of uncertain payload and other disturbance such as coupling force. A disturbance observer for this parallel manipulator is first constructed to estimate and compensate the unknown disturbance. A cascade control algorithm is then applied to separate the hydraulic dynamics from the mechanical part, which can mask the hydraulic dynamics with an inner loop. With such a control structure, known control design methods within the area of manipulator control can be directly used in the outer loop. In this approach, the complex dynamics and direct kinematics of the parallel manipulator are not required and acceleration feedback is also avoided. Experimental results are presented to show the effectiveness of the proposed scheme.  相似文献   

12.
For stabilization of a robot manipulator upon collision with a stiff environment, a nonlinear bang-bang impact controller is developed. Under this control, a robot can successfully achieve contact tasks without changing the control algorithm or controller gains throughout all three modes: free space, transition and constrained motion. It uses a robust hybrid impedance/time-delay control algorithm to first absorb impact forces and stabilize the system. This control input alternates with zero when no environment force is sensed due to loss of contact. This alternation of control action repeats until the impact transient subsides and steady state is attained. After impact transient, the hybrid impedance/time-delay control algorithm is again utilized. This bang-bang control method provides stable interaction between a robot with severe nonlinear joint friction and a stiff environment, and achieves rapid response while minimizing force overshoots. During contact transition, we employ one simple control algorithm that switches only to zero and maintains the same gains, while other controllers use more than one control algorithm or different control gains. It is shown via experiments that overall performance is superior or comparable to more complicated existing impact force control techniques.  相似文献   

13.
A linear independent joint control scheme is proposed. The design is made robust by closing another feedback loop that uses acceleration information besides the typical position and velocity loops. Reconstruction of acceleration measurements is performed via a suitable state-variable filter. Linear feedforward compensation is used to improve tracking performance of the closed-loop scheme. The control algorithm is tested first in a discrete-time simulation on a single-joint drive system with imposed disturbance torques. Then, real-time implementation on a high-speed parallel robot is presented. The experimental results demonstrate the effectiveness of the proposed technique  相似文献   

14.
A torque sensorless control for a multi-degree-of-freedom manipulator is described. In the method, two disturbance observers are applied to each joint. One is used to realize a robust motion controller. The other is used to obtain a sensorless torque controller. A robust acceleration controller based on the disturbance observer is shown. To obtain the sensorless torque control, it is necessary to calculate the reaction torque when the mechanical system performs a force task. The calculation method for the reaction torque is explained. Then the method is expanded to workspace force control in the multi-degree-of-freedom manipulator. Several experimental results are shown to confirm the validity of the proposed sensorless force controller  相似文献   

15.
Stable and robust walking in various environments is one of the most important abilities for a humanoid robot. This paper addresses walking pattern synthesis and sensory feedback control for humanoid stair climbing. The proposed stair-climbing gait is formulated to satisfy the environmental constraint, the kinematic constraint, and the stability constraint; the selection of the gait parameters is formulated as a constrained nonlinear optimization problem. The sensory feedback controller is phase dependent and consists of the torso attitude controller, zero moment point compensator, and impact reducer. The online learning scheme of the proposed feedback controller is based on a policy gradient reinforcement learning method, and the learned controller is robust against external disturbance. The effectiveness of our proposed method was confirmed by walking experiments on a 32-degree-of-freedom humanoid robot.  相似文献   

16.
A bilateral teleoperator allows operators to use a master manipulator to interact with the environment via a slave manipulator. It can be used in remote, hazardous or inaccessible situations. Although numerous bilateral teleoperation studies have been conducted on electrical actuators, research on hydraulic actuators, especially research on electro-hydrostatic actuators (EHAs), a class of pump-controlled systems, is currently limited. In bilateral teleoperation, one issue concerns how to tune the controller parameters with regard to stability and transparency in the presence of uncertainty. In this paper, an approach based on quantitative feedback theory (QFT) that provides guidance on controller parameter selection during the bilateral teleoperation of EHAs is introduced. Parametric uncertainties in dynamics of human operators, master manipulators and environments are described in templates to compute bounds quantitatively, and trade-offs between stability and transparency are visualized. Four commonly used bilateral control schemes are exemplified using this method: force reflection (FR), position error (PE), shared compliant control (SCC) and force reflection with passivity (FRP). The bilateral controllers are tuned through simulations and are validated through contact experiments involving both soft and hard environments. Given its simple structure and excellent level of transparency, FR is found to be the most suitable scheme of the four for teleoperations of EHAs.  相似文献   

17.
This paper deals with the problem of stable grasping in rolling manipulations with soft deformable fingertips in two-dimensional space and without the effect of gravity. Two rolling distance models for the soft-area contact motion and their effect on contact kinematics are considered. The modeling of contact forces in soft-area contacts is discussed and an analysis of a stable grasp is made. A simple feedback controller for stabilizing the grasp is proposed and tested in simulation. The control law is based on the object's equilibrium conditions and is designed so that it drives the system at rest by achieving a desired value for the normal contact forces and appropriate tangential forces to balance the moments created by the contact offset.  相似文献   

18.
In this paper, the application of a dual-relay feedback approach toward modeling of frictional effects in servomechanisms is addressed. The friction model consists of Coulomb and viscous friction components, both of which can be automatically extracted from suitably designed relay experiments. At the same time, the dynamical model of the servomechanical system can be obtained from the experiments. Thus, a proportional-integral-derivative feedback motion controller and a feedforward friction compensator can be automatically tuned in this manner. The friction model obtained is also directly applicable to initialization of an adaptive control scheme proposed. Results from simulation and experiments are presented to illustrate the practical appeal of the proposed method  相似文献   

19.
This paper proposes a new damping control approach with positive acceleration, velocity and position feedback (PAVPF) scheme for piezo-actuated nanopositioning stages to implement high-bandwidth operation. To achieve this objective, the intrinsic hysteresis nonlinearity of the piezoelectric actuator is firstly handled by a feedforward compensator with a modified Prandtl–Ishlinskii model. Afterwards, the PAVPF controller with the pole-placement method is implemented to suppress the lightly damped resonant mode of the hysteresis compensated system. With the PAVPF controller, the poles of the damped system in a third-model can be placed to arbitrary positions with an analytical method. Finally, for accurately tracking a predefined trajectory, a high-gain proportional-integral (PI) controller is designed, which could deal with the disturbance and the unmodeled dynamics. For verifying the proposed PAVPF-based control approach, comparative experiments with positive velocity and position feedback controller and with PI controller are conducted on a piezo-actuated nanopositioning stage. Experimental results demonstrate that the developed control approach with PAVPF controller is effective on damping control and improves the control bandwidth of the conventional PI controller from 111 Hz to 766 Hz, which leads to the significant increase of the tracking speed.  相似文献   

20.
In this paper, a new controller is proposed for lateral stabilization of four wheel independent drive electric vehicles without mechanical differential. The proposed controller has three levels including high, medium and low control levels. Desired vehicle dynamics such as reference longitudinal speed and reference yaw rate are determined by higher level of controller. Moreover, using a neural network observer and a fuzzy logic controller, a novel reference longitudinal speed generator system is presented. This system guarantees the vehicle’s stable motion on the slippery roads. In this paper, a new sliding mode controller is proposed and its stability is proved by Lyapunov stability theorem. This sliding mode control structure is faster, more accurate, more robust, and with smaller chattering than classic sliding mode controller. Based on the proposed sliding mode controller, the medium control level is designed to determine the desired traction force and yaw moment. Therefore, suitable wheel forces are calculated. Finally, the effectiveness of the introduced controller is investigated through conducted simulations in CARSIM and MATLAB software environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号