首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
论述了用Catmull-Clark细分曲面及能量优化法对多张三次B样条曲面进行混合的方法。首先引入一种边界拓扑修改的细分规则,可生成逐段光滑的细分曲面,在此基础上构造多张三次B样条曲面的混合曲面,采用能量优化方法求解控制顶点。与现有方法相比,构造的混合曲面形状易于控制,能满足复杂的边界要求,且整个混合曲面除了在有限奇异点处为C^1连续外均达到C^2连续。  相似文献   

4.
An automated multi-material approach that integrates multi-objective Topology Optimization (TO) and multi-objective shape optimization is presented. A new ant colony optimization algorithm is presented and applied to solving the TO problem, estimating a trade-off set of initial topologies or distributions of material. The solutions found usually present irregular boundaries, which are not desirable in applications. Thus, shape parameterization of the internal boundaries of the design region, and subsequent shape optimization, is performed to improve the quality of the estimated Pareto-optimal solutions. The selection of solutions for shape optimization is done by using the PROMETHEE II decision-making method. The parameterization process involves identifying the boundaries of different materials and describing these boundaries by non-uniform rational B-spline curves. The proposed approach is applied to the optimization of a C-core magnetic actuator, with two objectives: the maximization of the attractive force on the armature and the minimization of the volume of permanent magnet material.  相似文献   

5.
Recent advances in shape optimization rely on free-form implicit representations, such as level sets, to support boundary deformations and topological changes. By contrast, parametric shape optimization is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. We propose a novel approach to shape optimization that combines and retains the advantages of the earlier optimization techniques. The shapes in the design space are represented implicitly as level sets of a higher-dimensional function that is constructed using B-splines (to allow free-form deformations), and parameterized primitives combined with R-functions (to support desired parametric changes). Our approach to shape design and optimization offers great flexibility because it provides explicit parametric control of geometry and topology within a large space of free-form shapes. The resulting method is also general in that it subsumes most other types of shape optimization as special cases. We describe an implementation of the proposed technique with attractive numerical properties. The explicit construction of an implicit representation supports straightforward sensitivity analysis that can be used with most gradient-based optimization methods. Furthermore, our implementation does not require any error-prone polygonization or approximation of level sets (isocurves and isosurfaces). The effectiveness of the method is demonstrated by several numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
基于ANSYS的自行车车架拓扑优化设计   总被引:2,自引:0,他引:2       下载免费PDF全文
 为了寻求自行车车架的最佳结构形状,对其进行拓扑优化设计.首先介绍拓扑优化的研究现状和数学模型,接着应用有限元分析软件ANSYS 110对自行车车架进行拓扑优化设计,得出自行车车架的最佳结构形状为2个三角形,并对目前的自行车车架提出了改进措施.  相似文献   

8.
In the past few years, multi-objective optimization algorithms have been extensively applied in several fields including engineering design problems. A major reason is the advancement of evolutionary multi-objective optimization (EMO) algorithms that are able to find a set of non-dominated points spread on the respective Pareto-optimal front in a single simulation. Besides just finding a set of Pareto-optimal solutions, one is often interested in capturing knowledge about the variation of variable values over the Pareto-optimal front. Recent innovization approaches for knowledge discovery from Pareto-optimal solutions remain as a major activity in this direction. In this article, a different data-fitting approach for continuous parameterization of the Pareto-optimal front is presented. Cubic B-spline basis functions are used for fitting the data returned by an EMO procedure in a continuous variable space. No prior knowledge about the order in the data is assumed. An automatic procedure for detecting gaps in the Pareto-optimal front is also implemented. The algorithm takes points returned by the EMO as input and returns the control points of the B-spline manifold representing the Pareto-optimal set. Results for several standard and engineering, bi-objective and tri-objective optimization problems demonstrate the usefulness of the proposed procedure.  相似文献   

9.
This paper presents a general parametric design approach for 2-D shape optimization problems. This approach has been achieved by integrating practical design methodologies into numerical procedures. It is characterized by three features: (i) automatic selection of a minimum number of shape design variables based on the CAD geometric model; (ii) integration of sequential convex programming algorithms to solve equality constrained optimization problems; (iii) efficient sensitivity analysis by means of the improved semi-analytical method. It is shown that shape design variables can be either manually or systematically identified with the help of equality constraints describing the relationship between geometric entities. Numerical solutions are performed to demonstrate the applicability of the proposed approach. A discussion of the results is also given:  相似文献   

10.
A framework to validate and generate curved nodal high‐order meshes on Computer‐Aided Design (CAD) surfaces is presented. The proposed framework is of major interest to generate meshes suitable for thin‐shell and 3D finite element analysis with unstructured high‐order methods. First, we define a distortion (quality) measure for high‐order meshes on parameterized surfaces that we prove to be independent of the surface parameterization. Second, we derive a smoothing and untangling procedure based on the minimization of a regularization of the proposed distortion measure. The minimization is performed in terms of the parametric coordinates of the nodes to enforce that the nodes slide on the surfaces. Moreover, the proposed algorithm repairs invalid curved meshes (untangling), deals with arbitrary polynomial degrees (high‐order), and handles with low‐quality CAD parameterizations (independence of parameterization). Third, we use the optimization procedure to generate curved nodal high‐order surface meshes by means of an a posteriori approach. Given a linear mesh, we increase the polynomial degree of the elements, curve them to match the geometry, and optimize the location of the nodes to ensure mesh validity. Finally, we present several examples to demonstrate the features of the optimization procedure, and to illustrate the surface mesh generation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Non-destructive testing (NDT) detects damage according to a difference in a physical phenomenon between a normal structure and damaged structure. As a solution avoiding human errors in NDT, a numerical method based on a dynamical numerical analysis model and a structural optimization algorithm was proposed. This method automatically derives a structure with a response that is equal to that of a damaged structure through an optimization procedure. Among structural optimization methods, topology optimization can optimize the structure fundamentally by changing the topology and not just the shape of a structure. Thus, topology optimization is employed together with eigenfrequency analysis, which is the most fundamental methodology of NDT. The proposed method derives a structure that has the same eigenfrequencies as a damaged structure employing topology optimization. The shape and location of damage can be identified through the optimal shape obtained.  相似文献   

12.
基于人工材料的结构拓扑渐进优化设计   总被引:18,自引:1,他引:17  
首先,提出了一种在结构边界和孔洞周围附加人工材料的思路。在此基础上,结合ESO方法和应力灵敏度,建立了结构有限单元增、删的准则, 给出了一种新的拓扑优化算法。算例表明该方法能采用固定有限元网格中不同的初始优化结构就可获得优化拓扑。由于其概念上的简洁性和应用上的有效性,该方法具有一定的工程应用价值。  相似文献   

13.
提出了将设计和分析、拓扑与形状优化集成的思想,探索了基于等几何裁剪分析的拓扑与形状集成优化设计算法,该方法统一了结构优化的计算机辅助设计、计算机辅助工程分析和优化设计的模型,基于B样条的等几何裁剪分析既能准确表达几何形状,又可以用裁剪面分析方便处理任意复杂拓扑优化问题,由裁剪选择标准确定合理的拓扑结构变动方向,结构变动时无需重新划分网格,设计结果突破初始设计空间的限制,还可方便优化形状。建立了等几何裁剪灵敏度分析的计算方法,给出了等几何裁剪分析拓扑与形状集成优化算法,通过典型实例表明所用方法的正确性和有效性。  相似文献   

14.
This study presents a level set–based topology optimization with isogeometric analysis (IGA) for controlling high-frequency electromagnetic wave propagation in a domain with periodic microstructures (unit cells). The high-frequency homogenization method is applied to characterize the macroscopic high-frequency waves in periodic heterogeneous media whose wavelength is comparative to or smaller than the representative length of a unit cell. B-spline basis functions are employed for the IGA discretization procedure to improve the performance of electromagnetic wave analysis in a unit cell and topology optimization. Also, to keep the same order of continuity on the periodic boundaries as on other element edges in the domain, we propose the extended domain approach, while incorporating Floquet periodic boundary condition (FPBC). Two types of optimization problems are taken as examples to demonstrate the effectiveness of the proposed method in comparison with the standard finite element analysis (FEA). The optimization results provide optimized topologies of unit cells qualified as anisotropic metamaterials with hyperbolic and bidirectional dispersion properties at the macroscale.  相似文献   

15.
Nonlinear structural optimization is fairly expensive and difficult, because a large number of nonlinear analyses is required due to the large number of design variables involved in topology optimization. In element density based topology optimization, the low density elements create mesh distortion and the updating of finite element material with low density elements has a severe effect on the optimization results in the next cycles. In order to overcome these difficulties, the equivalent static loads method for nonlinear response structural optimization (ESLSO) primarily used for size and shape optimization has been applied to topology optimization. The nonlinear analysis is performed with the given loading conditions to calculate equivalent static loads (ESLs) and these ESLs are used to perform linear response optimization. In this paper, the authors have presented the results of five case studies with material, geometric and contact nonlinearities showing good agreement and providing justification of the proposed method.  相似文献   

16.
Voxel-based shape analysis and search of mechanical CAD-models   总被引:1,自引:0,他引:1  
3D model search techniques play an important part in facilitating design reuse. This paper discusses 3D model searching issues in the application domain of mechanical CAD. For mechanical CAD models, both geometrical information and topological information are important for similarity assessment. We proposed two shape signatures to describe the geometry and the topology of a mechanical CAD model respectively. The two shape signatures are extracted from voxelized models. Experimental results suggest that the proposed method can help engineers effectively search out wanted models in several ways.  相似文献   

17.
孔德明  黄紫双  杨丹 《计量学报》2020,41(8):909-917
为了解决非均匀有理B样条(NURBS)拟合二次曲面精度低、过程复杂的问题,提出了一种u、v参数化方向选择及求解出最优控制点个数选取范围的高效拟合二次曲面的方法。首先,根据二次曲面的形状特征确定u、v的参数化方向;然后,利用差值绝对值和均方根误差对不同控制点个数拟合出的各个重构曲面进行误差定量分析,根据定量分析的结果曲线求解拟合二次曲面的最优控制点个数的最小取值;最后,结合程序运行时间的关系曲线求解拟合二次曲面的最优控制点个数的最大取值。实例表明:较为常见的二次曲面的NURBS最优控制点个数的合理选取范围为201~541。该分析结果为NURBS标准分析表面的拟合过程中遇到的问题提供了理论支持和技术参考。  相似文献   

18.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Reverse engineering is the process of developing a computer-aided design (CAD) model and a manufacturing database for an existing object. This process is used in CAD modelling of part prototypes, in designing moulds and in automated inspection of parts with a complex surface. This paper reports on the automatic segmentation and approximation of three-dimensional digitized points for reverse engineering. Based on an innovation that uses the properties of a non-uniform rational B-spline (NURBS) or B-spline and makes ordered digitized points be control points directly to construct a NURBS or B-spline surface, which takes less computation time than traditional algorithms in calculating surface normals and curvatures at digitized points, an algorithm was developed for automatic segmentation and NURBS surfaces fitting for digitized points.  相似文献   

20.
桁架结构智能布局优化设计   总被引:4,自引:0,他引:4  
结构的布局优化由于涉及尺寸、形状和拓扑三个层次的综合设计而成为优化问题中的难点,结合桁架结构提出了一个基于多个初始基结构的布局优化方法。以智能生成的、型式多样合理的基结构代替传统模型中的单一基结构,然后从不同基结构下的拓扑优化结果中找出最优设计。在克服传统基结构法有可能限制求解空间而丢失最优解这一局限性的同时,将形状和拓扑优化设计有效分离,降低了求解的难度,并且结合拓扑变化法,实现了桁架结构从选型生成、分析计算到优化设计的一体化智能设计过程。算例表明:利用该文提出的方法进行桁架结构的最优布局设计是可靠有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号