首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following paper presents the results of a research project on the total costs to society induced by different technologies for electric power production in the Federal Republic of Germany and the conclusions of the latest international discussion on the topic. This is to say that the problem of electricity costs is looked upon from a macroeconomic perspective including the internal or private costs as well as the social costs of electricity production. The paper focuses on conventional electricity generation on the basis of fossil and nuclear fuels on the one side and on wind and photovolatic electricity as examples for renewable energy sources on the other.  相似文献   

2.
The energy consumed in Ireland is primarily achieved by the combustion of fossil fuels. Ireland's only indigenous fossil fuel is peat; all other fossil fuels are imported. As fossil fuels continually become more expensive, their use as an energy source also has a negative impact on the environment. Ireland's energy consumption can be separated into three divisions: transportation, electricity generation and heat energy. Ireland however has a vast range of high quality renewable energy resources. Ireland has set a target that 33% of its electricity will be generated from renewable sources by 2020 [I. Government. Delivering a Sustainable Energy Future for Ireland; 2007.]. The use of biomass, wind and ocean energy technologies is expected to play a major part in meeting this target. The use of renewable energy technologies will assist sustainable development as well as being a solution to several energy related environmental problems. This paper presents the current state of renewable energy technologies and potential resources available in Ireland. Considering Ireland's present energy state, a future energy mix is proposed.  相似文献   

3.
The reduction of pollutant emissions and greenhouse gases, as well as the strong energy dependence on fossil fuels (gas and fuel oil), have, among other reasons, led many countries in recent years to develop policies to promote and encourage the use of alternative, sustainable, clean and predictable sources of energy. This paper presents an overview of the production of electricity from renewable sources (PE-RES) in Spain, and offers an outline of the current level of development of renewable energy. It also reviews the current support system, the costs of integrating renewable energy into the electric system as well as the effects of this type of energy on the electricity wholesale market price, the Gross Domestic Product (GDP), the environment, human health and employment.  相似文献   

4.
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption, but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors, but electrification and e-methane may be more feasible. Seen from a systems perspective, hydrogen will play a key role in future renewable energy systems, but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors.  相似文献   

5.
An assessment is made as to whether renewable energy use for electricity generation in the EU was beneficial throughout the cycle of high and low oil prices. Costs and benefits are calculated with the EU statistics for the period of low oil prices 1998–2002 and high oil prices 2003–2009. The share of renewable energy in electricity production was 21% of all energy resources in 2008, growing on average 5% a year during 2003–2008 compared to nil growth of the fossil fuels mix. Correlations show significant impacts of growing renewable energy use on changes in consumers' electricity prices during the high and rapidly increasing fossil fuel prices in the period 2005–2008. The growing use has contributed to price decrease in most countries that use more renewable energy and price increase in many countries that use little renewable energy. Costs and benefits are assessed through comparison between the observed consumers' electricity prices and simulated prices had they followed the costs of fossil fuel mix. A net benefit of 47 billion euro throughout the oil price cycle is attributable to the growing use of renewable energy, which is on average 8 billion euro a year. This net benefit is larger than the total public support for renewable energy. The net benefit would be larger had the EU anticipated high oil prices through more public support during low oil prices, as this would create productive capacity, but countries' interests increasingly differed. An anti-cyclic EU policy is recommended.  相似文献   

6.
Renewable energy resources have historically played a small role for electricity generation in the US. However, concerns such as security of energy supply, limitations and price fluctuations of fossil fuels, and threats of climate changes have encouraged US policy makers to think and debate about diversification strategy in the energy supply and promotion of renewables. The current paper discusses the role of renewable portfolio in the US energy action plan during 2010–2030. A system dynamics model is constructed to evaluate different costs of renewable energy utilization by 2030. Results show that while renewables will create a market with near 10 billion $ worth (in the costs level) in 2030, the total value of renewable energy promotion and utilization in the US will be more than 170 billion $(in the costs level) during 2010–2030.  相似文献   

7.
《Biomass & bioenergy》2008,32(12):1359-1366
Practical considerations of the environmental and economic costs and pollutant emissions of different fuel choices are not always well-outlined in the literature and thus are not always considered or understood by consumers and planners. In this paper, we analyze data to compare various fuels used for heating in the northern New England region of the USA, an area heavily dependent on heating oil. Our results suggest that (1) current rural households using fossil fuels or electricity for heating could lower energy costs and contribute less fossil carbon dioxide to the atmosphere by switching to wood as a heat energy source and (2) in newly built rural schools and other comparable complexes, heating with woodchips can be more cost effective and less environmentally damaging than heating with fossil fuels or electricity.  相似文献   

8.
The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time.  相似文献   

9.
This paper examines the willingness for Korean consumers to pay a premium for renewable electricity under a differentiated good framework by applying the contingent valuation method. Korean consumers have been required to pay for their use of renewable electricity as of 2012. First, we find that Korean consumers recognise renewable electricity as a differentiated good from traditional electricity generated from fossil fuels or nuclear energy. The mean willingness to pay to use renewable electricity is USD 1.26 per month. Second, we confirm the existence of perfect substitution relationships among variant renewable technologies, which suggests that Korean consumers do not perceive them as differentiated goods. One reason for this perception is that Korean consumers are more inclined to favour economic feasibility over sustainability or the availability of the resource stock when choosing between renewable technology types. In sum, we can say that Korean consumers recognise renewable electricity as a differentiated good but that they do not differentiate between variant renewable technologies. Thus, the imposition of the cost of renewable electricity on consumers in the form of increased electricity charges would be acceptable to consumers as long as any price rise properly reflects their preferences.  相似文献   

10.
C.A. Babu  S. Ashok 《Renewable Energy》2009,34(11):2455-2460
Share of power generation from renewable energy sources has been steadily increasing all over the world, mainly due to the concern about clean environment. Cost of renewable power generation has reduced considerably during the last two decades due to technological advancements and at present some of the renewable energy sources can generate power at costs comparable with that of fossil fuels. In this paper, application of renewable energy-based power generation is proposed, for load management. The formulation utilizes non-linear programming technique for minimizing the electricity cost and reducing the peak demand, by supplementing power by renewable energy sources, satisfying the system constraints. Case study of twenty-two large-scale industries showed that, significant reduction in peak demand (about 34%) and electricity cost (about 14%) can be achieved, by the optimal utilization of the renewable energy from independent power producers (IPPs).  相似文献   

11.
Haydar Aras   《Renewable Energy》2003,28(14):2213
The increase in negative effects of fossil fuels on the environment has forced many countries, especially the developed ones, to use renewable energy sources. Currently the fastest developing energy source technology is wind energy. Because wind energy is renewable and environment friendly, systems that convert wind energy to electricity have developed rapidly. Wind energy is an alternative clear energy source compared to the fossil fuels that pollute the lower layer of atmosphere. Because wind energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of this study.  相似文献   

12.
The majority of energy being used is obtained from fossil fuels, which are not renewable resources and require a longer time to recharge or return to its original capacity. Energy from fossil fuels is cheaper but it faces some challenges compared to renewable energy resources. Thus, one of the most potential candidates to fulfil the energy requirements are renewable resources and the most environmentally friendly fuel is Hydrogen. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Hydrogen energy became the most significant energy as the current demand gradually starts to increase. It is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available, while some of these technologies are still under development. Therefore, the global interest in minimising the effects of greenhouse gases as well as other pollutant gases also increases. In order to investigate hydrogen implementation as a fuel or energy carrier, easily obtained broad-spectrum knowledge on a variety of processes is involved as well as their advantages, disadvantages, and potential adjustments in making a process that is fit for future development. Aside from directly using the hydrogen produced from these processes in fuel cells, streams rich with hydrogen can also be utilised in producing ethanol, methanol, gasoline as well as various chemicals of high value. This paper provided a brief summary on the current and developing technologies of hydrogen that are noteworthy.  相似文献   

13.
This paper explores energy and physical resource limitations to transitioning from fossil fuels to the large-scale generation of electricity with photovoltaic arrays. The model finds that business as usual models, which involve growth rates in world electricity demand of between 2% and 3.2% p.a., exhibit severe material difficulties before the end of this century. If the growth rate is lowered to 1% p.a., then it may be possible to reach the year 2100 before such difficulties, but it is likely that material constraints will occur early the next century. Steady state scenarios show that silicon based photovoltaic panels could, however, displace fossil fuels before the middle of the century, providing around the same order of magnitude as present (2010) world electricity demand. Scenarios also show that outcomes will be highly dependent upon the rate of improvement of photovoltaic technologies. The analysis does not contend that silicon PV technology is the only technology that will or can be adopted, but as the embodied energy content per kWh generated of this technology is similar to other renewable technologies, such as other solar technologies and wind, it can provide a baseline for examining a transition to a mixture of renewable energy sources.  相似文献   

14.
Towards a sustainable energy supply is a clear direction for exploratory research in Shell. Examples of energy carriers, which should be delivered to the envisaged sustainable energy markets, are bio-fuels, produced from biomass residues, and hydrogen (or electricity), produced from renewable sources. In contrast to the readily available ancient sunlight stored in fossil fuels, the harvesting of incident sunlight will be intermittent, efficient electricity and hydrogen storage technologies need to be developed. Research to develop those energy chains is going on, but the actual transformation from current fossil fuel based to sustainable energy markets will take a considerable time. In the meantime the fossil fuel based energy markets have to be transformed to mitigate the impact of the use of fossil fuels. Some elements in this transformation are fuels for ultra-clean combustion (hydrocarbons and oxygenates), hydrogen from fossil fuels, fuels for processors for fuel cells, carbon sequestration.  相似文献   

15.
It is known that the supplies of fossil fuels are limited and their utilization as energy sources causes environmental degradation due to incomplete combustion when used as energy source, in addition to this as the world population increases the demand for energy sources increases, therefore the issue of a gradual replacement of fossil fuels with renewable energy sources is of major consideration for most countries: Iran Bing located in Asian Middle East enjoys a great potential for producing some 6500 MW of electricity with wind energy. The feasibility of manufacturing wind turbines is investigated in this article.  相似文献   

16.
Energy is an essential ingredient of socio-economic development and economic growth. Renewable energy provides a variable and environmental friendly option and national energy security at a time when decreasing global reserves of fossil fuels threatens the long-term sustainability of global economy. The integration of renewable resources in desalination and water purification is becoming increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies have low operating and maintenance costs. In this paper an attempt has been made to present a review, in brief, work of the highlights that have been achieved during the recent years worldwide and the state-of-the-art for most important efforts in the field of desalination by renewable energies, with emphasis on technologies and economics. The review also includes water sources, demand, availability of potable water and purification methods. The classification of distillation units has been done on the basis of literature survey till today. A comparative study between different renewable energy technologies powered desalination systems as well as economics have been done. The real problem in these technologies is the optimum economic design and evaluation of the combined plants in order to be economically viable for remote or arid regions. Wind energy technology is cheaper than the conventional ones, and used extensively around the world. The slow implementation of renewable energy projects especially in the developing countries are mostly due to the governments subsides of conventional fuels products and electricity. The economic analyses carried out so far have not been able to provide a strong basis for comparing economic viability of each desalination technology. The economic performances expressed in terms of cost of water production have been based on different system capacity, system energy source, system component, and water source. These differences make it difficult, if not impossible, to assess the economic performance of a particular technology and compare it with others. Reverse osmosis is becoming the technology of choice with continued advances being made to reduce the total energy consumption and lower the cost of water produced.  相似文献   

17.
The provision of electricity is a key component in the development of a country’s health care facilities. This study was performed to estimate the cost of powering a rural primary health centre, in India with a decentralised renewable energy system. The costs were also compared between a decentralised renewable energy system and providing electricity from a grid source. The critical or break-even distance that makes electricity from a decentralised renewable energy system cost effective over that from a grid source was determined. The decentralised renewable energy system considered was a hydrogen-based fuel cell for the generation of electricity with hydrogen extracted from biogas obtained from biomass. The software program HOMER was used for the simulation analysis. The cost of a decentralised renewable energy system was found to be between seven times and less than half that of conventional energy, and the break-even distance was between 43.8 km to a negative distance for varying ranges of input component costs. The results of this study indicated that the use of a decentralised renewable energy system to power a rural primary health centre is both feasible and cost effective, and may even be cheaper than using electricity from a grid source.  相似文献   

18.
In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims increasing the share of renewable energies in the electricity system while the second type aims development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims to increase the share of renewable energies in the electricity system while the second type aims the development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. The results of the analysis showed that replacing fossil fuel-based electricity generation with wind and solar power is a less expensive way for the energy consumer to reduce GHG emissions (60 and 92 CAD/ tonne CO2e for wind and solar, respectively) compared to investing on energy storage technologies (225 and 317 CAD/ tonne CO2e for Power-to-Gas and battery powered forklifts, respectively). However, considering the current Ontario's electricity mix, incentives for the Power-to-Gas and battery powered technologies are less expensive ways to reduce emissions compared to replacing the grid with wind and solar power technologies (1479 and 2418 CAD/ tonne CO2e for wind and solar, respectively). Our analysis also shows that battery storage and hydrogen storage are complementary technologies for reducing GHG emissions in Ontario.  相似文献   

19.
The transformation from a fossil fuels economy to a low carbon economy reshapes how energy is transmitted. Since most renewable energy is harvested in the form of electricity, hydrogen obtained from water electrolysis using green electricity is considered a promising energy vector. However, the storage and transportation of hydrogen at large scales pose challenges to the existing energy infrastructures, both regarding technological and economic aspects. To facilitate the distribution of renewable energy, a set of candidate hydrogen transportation infrastructures using methanol and ammonia as hydrogen carriers were proposed. A systematical analysis reveals that the levelized costs of transporting hydrogen using methanol and ammonia in the best cases are $1879/t-H2 and $1479/t-H2, respectively. The levelized cost of energy transportation using proposed infrastructures in the best case is $10.09/GJ. A benchmark for hydrogen transportation infrastructure design is provided in this study.  相似文献   

20.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号