首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the measurement and a statistical analysis of the resultant force system, consisting of an axial force and torque, in BTA deep hole machining. The measurements were performed using a specially designed two-component piezoelectric dynamometer and adopting the rotating cutting tool-stationary workpiece procedure. The dynamometer was calibrated for static and dynamic outputs and techniques were employed for increasing the measuring accuracy and reducing the cross-interference by obtaining the elements of the system transfer function. Experiments were carried out to measure the mean values and the dynamic fluctuations of the axial force and torque. The recorded data was processed and analysed to establish all major statistical properties of the axial force and torque. Results show that the dynamic fluctuations of the axial force and torque in BTA deep hole machining can be represented by a stationary wideband process with a gaussian density distribution function. Such a mathematical model is essential for evaluating the dynamic response of the machine-workpiece system as well as the true motion of the cutting tool tip, and to establish the reliability of the machining process.  相似文献   

2.
Friction stir processing (FSP) of Al6061-SiC-Graphite hybrid composites is studied in detail via force analysis, spectroscopic, microstructural and indentation studies. Effect of various tool rotational speeds was assessed, and the axial force variation was monitored. The presence of graphite as a reinforcement influences the axial force fluctuations due to its flaky nature and high thermal conductivity. Variation in microstructure at different tool rotational speed is studied using scanning electron microscope. The tool rotational speed has a significant influence on the area of FSP zone, fragmentation and depth of penetration of particles, dispersion of agglomerates and grain refinement of the matrix material. Spectroscopic characterization of the processed samples was done using Raman analysis and X-Ray diffraction studies. A noticeable change in intensity and shift in the respective Raman peak positions were observed, indicating residual stresses and various disorders in the crystal structure of the reinforced particles. Influence of tool rotational speed and existence of SiC and Graphite particles on the mechanical properties were further evaluated using nano indentation testing. The hybrid composite shows the combination of best and uniform mechanical properties at an optimum set of processing parameters.  相似文献   

3.
We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.  相似文献   

4.
We have studied dynamics of pulsation that develop during the explosion boil-up of overheated water jets emitted via a nozzle from a high-pressure vessel. At a temperature within 480–490 K, the water jet exhibits complete breakage accompanied by a sharp drop in the reactive force and the appearance of intense fluctuations. The power spectrum of these fluctuations has a divergent 1/f low-frequency component, which is indicative of the instability of flow and the possibility of large-scale low-frequency outbursts.  相似文献   

5.
李勇  杨晓京 《材料导报》2015,29(2):155-158,166
采用分子动力学方法对不同刀尖圆弧半径时在纳米级尺度下切削加工单晶铜表面的过程进行分子动力学建模、计算与分析,研究不同刀尖圆弧半径对单晶铜纳米切削过程中微观接触区域原子状态和作用力变化的影响规律.研究结果发现:在单晶铜纳米切削过程中,切削作用力、位错及位错发射等缺陷随着切削厚度或刀尖圆弧半径的增大而增加;在相同切削厚度,相同切削距离下,刀尖圆弧半径越大,在刀具前方堆积的切屑体积越小.此外,在切削距离为1 nm时,切削作用力发生突变;在切削距离1 nm到2 nm时,可以明显看到随切削距离的增加,刀尖圆弧半径越小,切削作用力上升幅度越大.在切削距离为3.5 nm时,切削作用力基本保持稳定波动,其主要原因是位错等缺陷的产生引发作用力的波动.  相似文献   

6.
In atomic force microscopy, cantilevers with a reflective coating are often used to reduce optical shot noise for deflection detection. However, static AFM experiments can be limited by classical noise and therefore may not benefit from a reduction in shot noise. Furthermore, the cantilever coating has the detrimental side-effect of coupling light power fluctuations into true cantilever bending caused by time-varying thermal stresses. Here, we distinguish three classes of noise: detection, force, and displacement noise. We discuss these noises with respect to cantilever coating in the context of both static and dynamic AFM experiments. Finally, we present a patterned cantilever coating which reduces the impact of these noises.  相似文献   

7.
Molecular motors operate in an environment dominated by thermal fluctuations. A molecular motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations. In this case, the chemical reaction establishes free energy barriers to block the backward fluctuations. The effect of the chemical reaction on the motor motion can be represented by the motor potential profile (rectifying barrier andor active driving force). Different motor mechanisms are characterised by different motor potential profiles. The mathematical theory and properties of molecular motors are discussed and a mathematical framework is developed for extracting the motor potential profile from measured time series of motor position. As an example, we discuss the binding zipper model for the F(1) ATPase, which was motivated mainly by the fact that the motor potential profile of the F(1) ATPase is nearly a constant slope.  相似文献   

8.
Spatial and temporal fluctuations of the electric polarization were imaged in polymer thin films near the glass transition using electric force microscopy. Below the glass transition the fluctuations are quasi-static, and spatial fluctuations were found to quantitatively agree with predictions for thermal fluctuations. Temporal fluctuations appear near the glass transition. Images of the space-time nanoscale dynamics near the glass transition are produced and analyzed.  相似文献   

9.
Using digital image correlation, we track the displacement fluctuations within a persistent shear band in a dense sand specimen bounded by glass walls undergoing plane strain compression. The data evidences a clear, systematic, temporally recurring pattern of vortex formation, dissolution, and reformation throughout macroscopic softening and critical state regimes. During softening, locally affine deformation zones are observed at various locations along the shear band, which we argue to be kinematic signatures of semi-stable force chains. Force chain collapse then occurs, inducing vortex formation. Local jamming at the conflux of opposing displacements between adjacent vortices arrests the vortices, providing an avenue for potential new force chains to form amidst these jammed regions. The process repeats itself temporally throughout the critical state. The pattern further correlates with fluctuations in macroscopic shear stress. We characterize the nature of the observed vortices, as they are different in our sands comprised of irregular shaped particles, as compared to previous observations from experiments and numerical simulations which involved circular or rounded particles. The results provide an interesting benchmark for behavior of non-circular/non-spherical particles undergoing shear.  相似文献   

10.
The presence of granular matter between the sliding blocks (such as for example gouge in rock joints and faults) considerably affects friction. The effect of grain movement and rolling is often modelled by considering them as spherical. This paper investigates the influence of the grain/particle shape. We found that rolling of non-spherical particles leads to an apparent friction reduction related to the effect of the moment equilibrium about a point of contact. The collective behaviour of rolling non-spherical particles is affected by their interaction by the elasticity of the material of the sliding blocks. In the case of identical and symmetrical particles, there exists a uniform solution whereby all particles undergo identical displacements. This solution is, however, unstable; at certain magnitudes of the friction force and the corresponding values of the displacement the solution bifurcates such that different particles show different displacements. When many particles of different sizes are rolling without interaction, the friction force fluctuates, and as the displacement increases, the fluctuations reach a steady state. The amplitudes of the fluctuations depend upon the shape factor; they are the smallest when the particles have a square shape and considerably increase as the period of particle rolling approaches the diameter.  相似文献   

11.
Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.  相似文献   

12.
The chamfer enhances the performance of the tool by strengthening the edge and reducing the possibility of tool wear and breakage. The strength of the chamfered tool can be investigated by analysis of process variables. This research investigates the effects of chamfer width and chamfer angle on process variables (force, stress, tool temperature and tool stress) in machining of a mild carbon low alloy steel by a cemented carbide tool using finite element method. The simulations show that the dead metal zone created under the tool acts as the effective cutting edge of the tool and increases the cutting forces. The predicted results show that the effect of chamfer width and angle is more pronounced on the thrust force than the cutting force. It also investigates the effect of chamfer on the effective shear angle and chip thickness, and comparison with available experimental results is presented. Tool temperatures are also predicted which suggests the presence of an optimum chamfer angle from the viewpoint of maximum tool temperature.  相似文献   

13.
测力刀柄系统可实时监测切削过程的轴向力和扭矩的变化,为测试自主设计的测力刀柄系统的使用性能,设计并研制了一套标定辅助工装,搭建了标定实验平台,完成了静、动态标定实验.采用逐级加、卸载法,确定了测力刀柄系统的线性度、重复性和滞后性等静态特性指标;通过脉冲激励法获得了测力刀柄系统的固有频率、阻尼比和最大工作频率等动态特性指...  相似文献   

14.
We have studied the current-driven depinning processes for a narrow 12-nm wide one-dimensional Bloch domain wall (DW) in films exhibiting perpendicular magnetic anisotropy (PMA). High sensitivity magnetotransport measurements allow us to observe the motion of the narrow DW between pinned sites separated by /spl sim/20 nm. Thermal fluctuations are found to play a crucial role. A current-driven depinning force two to three orders of magnitude higher than has been seen in conventional in-plane systems is found, suggesting a more efficient spin transfer mechanism in our PMA system.  相似文献   

15.
给出了一种用于复杂表面形状精密纳米加工的探针装置.该探针由一个高速可控的金刚石切割单元(FTC单元)和一个高灵敏度的压电式力传感器组成.而FTC单元由一个单点金刚石切割工具和一个压电陶瓷晶体(PZT)驱动器构成.压电陶瓷晶体(PZT)驱动器可对与切削量相对应的金刚石工具的Z向位置进行高速控制,从而实现加工复杂表面形状的目的.加工中的切削力是反映切削进程的重要指标,可由联结于FTC单元的高灵敏度力传感器进行测量.比对了用于联结力传感器和FTC单元的两种设计方法.  相似文献   

16.
In this study, an experimental investigation has been carried out on microstructure and mechanical properties of friction stir welded copper/brass dissimilar joints. Effect of axial tool force to welding quality has been investigated under obtained optimal tool rotation rate and tool traverse speed conditions. The tool for the dissimilar copper/brass friction stir welding manufactured from X155CrMoV12–1 cold work tool steel with material number of 1.2379. The friction stir welding quality was investigated by welding surface inspections, microstructural studies, micro hardness measurements and tensile tests. The experimental studies have shown that constant axial tool force during pre‐heating and during welding process are very important. As a result, by using 2.5–3 kN of axial tool force during pre‐heating and 5.5 kN of axial tool force during welding process, copper/brass dissimilar joints with well appearance and higher mechanical strength can be obtained.  相似文献   

17.
动态特性是衡量机床性能的一项重要指标,但目前并没有较好的数控机床整机动态特性评价方法。利用真实的动态切削力对数控机床进行激励,能够快速获取机床在切削力作用下的动态特性。鉴于切削参数会影响各频率成分对应的切削力幅值,基于不同工件材料和切削参数下的动态切削力,建立动态激振力模型,通过分频段激励来检验数控机床在不同频段下的动态特性。通过有限元仿真分析,判断数控机床在各个频段下的动态特性;对振动信号进行快速傅里叶变换,得到机床振动时的主要频率成分,为优化机床动态特性提供指导;对比各种动态切削力激振下不同机床的动刚度,评价不同机床动态特性的优劣。最后,通过激振试验验证了仿真结果的准确性。结果表明上述方法简单实用,能快速评价数控机床的动态特性,具有一定的实用价值。  相似文献   

18.
A technique for temperature-insensitive force measurement via strain-induced Gaussian-strain-chirped fiber Bragg grating (FBG) couple and differential optical power detection is proposed and experimentally demonstrated. For a temperature range from -10degC to 80degC , a linear force measurement with thermal fluctuations less than 2.5% full-scale is achieved by simply using cost-effective p-i-n photodiodes without any temperature compensation.  相似文献   

19.
The dynamics of individual flexible fibers in a turbulent flow field have been analyzed, varying their initial position, density and length. A particle-level fiber model has been integrated into a general-purpose, open source computational fluid dynamics code. The fibers are modeled as chains of cylindrical segments connected by ball and socket joints. The equations of motion of the fibers contain the inertia of the segments, the contributions from hydrodynamic forces and torques, and the connectivity forces at the joints. Direct numerical simulation of the incompressible Navier–Stokes equations is used to describe the fluid flow in a plane channel, and a one-way coupling is considered between the fibers and the fluid phase. We investigate the translational motion of fibers by considering the mean square displacement of their trajectories. We find that the fiber motion is primarily governed by velocity correlations of the flow fluctuations. In addition, we show that there is a clear tendency of the thread-like fibers to evolve into complex geometrical configurations in a turbulent flow field, in fashion similar to random conformations of polymer strands subjected to thermal fluctuations in a suspension. Finally, we show that fiber inertia has a significant impact on reorientation timescales of fibers suspended in a turbulent flow field.  相似文献   

20.
Atmospheric optical communication with a Gaussian Schell beam   总被引:7,自引:0,他引:7  
We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号