首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在我国目前石油总产量中,抚顺页岩油的产量占有很大的比重,但现行的加工方案尚有一些缺点,以往的研究工作(大半是抚顺研究所进行的)也常常只注意到某一馏分(如柴油馏分)的加工,对全馏分的加工问题则尚未引起足够的注意。1955年末我因教学需要,曾对抚顺页岩油全馏分的加工方向进行了一些探  相似文献   

2.
《润滑油》2018,(6)
金属轧制油所需的基础油黏度较低,主要来源于石油中的常压馏分和部分减压馏分,还可从加氢油或合成油中分馏提取,但对馏程范围有严格的要求,需要经过精密分馏制取。而石油加工企业普遍缺少精密分馏装置,轻质馏分多被用来制备溶剂油、煤油和柴油,因此金属轧制油基础油的制备受到一定限制。在目前产能过剩、燃料油市场饱和的形势下,石油加工企业可通过对石油、加氢油与合成油的轻组分进行精密分馏,制备不同黏度的轻质基础油来满足金属轧制油的生产需求,并以此提高石油产品附加值。此外冶金行业也十分重视金属材料的深加工,对轧制油的需求潜力十分巨大。  相似文献   

3.
在3×400 mL固定床加氢中试装置上评价了重油固定床加氢催化剂(包括重油加氢保护剂、重油加氢精制催化剂和芳烃饱和催化剂)用于中/低温煤焦油加氢改质的效果。中试条件为:原料体积空速0.8 h-1(按加氢精制催化剂计算),反应压力12.0 MPa和13.5 MPa,氢油比1 200∶1,保护剂床层平均反应温度270℃,精制催化剂床层平均反应温度350℃,芳烃饱和催化剂床层平均反应温度360℃,在2个操作压力下各运转120 h。结果表明:提高煤焦油加氢改质反应压力,有利于杂原子的脱除。煤焦油经过加氢改质后,残炭、杂原子、芳烃含量大大降低,各馏分产品性质明显改善。产物中石脑油馏分含量增加,芳烃潜含量高,可作为优质的催化重整原料;柴油馏分含量基本不变,硫、氮含量低,凝点低,可作为优质的柴油调合组分;蜡油馏分含量明显降低,残炭和金属含量少,可作为优质的催化裂化原料。上述结果表明将重油固定床加氢催化剂用于煤焦油加氢改质在技术上是可行的。  相似文献   

4.
在中试加氢装置上考察了页岩油全馏分、页岩油掺炼部分劣质催化柴油的混合原料油经加氢精制后加氢尾油的性质,以及副产石脑油馏分和柴油馏分的性质,并研究了产品分布情况。实验结果表明,页岩油混合油及掺炼部分劣质催化柴油的混合原料油经加氢精制后,C_5~+液体收率高,达95%以上,加氢精制尾油可为催化裂化装置提供优质的进料,且副产的石脑油馏分和柴油馏分性质较好,可以作为催化重整进料、汽油调和组分和清洁车用柴油调和组分。  相似文献   

5.
减压渣油加氢处理装置原料优化的研究   总被引:1,自引:0,他引:1  
在中型固定床渣油加氢处理试验装置上研究了减压渣油加氢处理过程中,几种稀释油对减压渣油加氧效果的影响。对比研究表明,润滑油糠醛精制装置抽出油、丙烷脱沥青装置脱沥青油、减压渣油加氢生成油350℃以上馏分均可作为减压渣油加氢处理过程中所需稀释油的替代品种,尤其是后两种油品作稀释油对生产用户更具实际意义。  相似文献   

6.
抚顺页岩油柴油馏分加氢精制的工艺条件   总被引:1,自引:1,他引:0  
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

7.
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

8.
以煤焦油各窄馏分占原料油的百分比及沥青质含量为依据,确定了煤焦油固定床加氢原料的切割点,并以切割后的煤焦油轻组分为原料,在3 ×400 mL固定床加氢中试装置上进行加氢改质,考察了催化剂床层温度和进料空速对加氢效果的影响.实验表明:460℃为该煤焦油合适的固定床进料切割点,煤焦油初馏点~460℃馏分固定床加氢最佳的工艺条件为:保护剂床层温度260℃、精制催化剂床层温度380℃、芳烃饱和催化剂床层温度380℃,空速为0.8h-1.在此工艺条件下,加氢改质后油品密度、残炭、杂原子含量显著降低,H/C提高.产品石脑油、柴油、蜡油收率依次为25.9%,63.2%,10.9%,石脑油芳烃含量高,可作为重整原料,柴油十六烷值高,硫、氮含量低,可作为优质的柴油调合油,蜡油精制后作为润滑油基础油.  相似文献   

9.
采用加氢处理组合工艺分别处理中低温和高温煤焦油,并在实验室小试装置上进行了试验研究,试验结果表明:中低温煤焦油采用沸腾床加氢预处理-固定床加氢裂化组合工艺处理后,杂质含量大幅降低,重组分馏程明显前移,经加氢预处理后可以实现全馏分煤焦油进固定床加氢处理要求,无尾油外甩;高温煤焦油经加氢预处理后,重组分得到一定程度轻质化,超过50%以上的重组分(>500℃)得到转化,外甩尾油量大幅下降,资源利用率明显提高;试验还发现煤焦油杂质脱除率与煤焦油的结构组成及馏分分布有很大关系。  相似文献   

10.
4月27日,中/低温煤焦油全馏分加氢多产中间馏分油成套工业化技术(FTH)通过鉴定。专家组认定,该技术为世界首创,并为我国煤代油战略开辟了一条经济、环保、节能、可行的新途径。专家鉴定组一致认为:陕煤化集团神木富油能源科技公司开发的中/低温煤焦油全馏分加氢多产中间馏分油成套工业化技术系世界首创,居领先水  相似文献   

11.
抚顺页岩油是含氮较高、富于不饱和烃的石蜡基页岩油,对氧及热的稳定性很差。用普通的方法精制,产品质量较低,精制损失亦大。如页岩粗轻油用酸碱洗滌法精制,损失达到20-25%,产品亦只能作柴油机燃料。如采用加氢精制法,总损失仅为2—3%,并可获得经济意义较高的汽油及煤油等产品,对资源的有效利用,具有重大的意义。我厂所进行的页岩粗轻油预饱和加氢,实质上是精制,饱和及轻度的裂化加氢。经过这样一次加氢即  相似文献   

12.
在微型固定床加氢反应装置上,以复合分子筛NiW/HUSY-γ-Al2O3(HUSY质量分数15%)为催化剂,对抚顺页岩油进行加氢处理,考察了工艺条件对加氢处理效果的影响.结果表明,最佳工艺条件为:反应温度400℃,反应压力9.0 MPa,氢油比(体积比)600∶1,液时空速0.5h-1;在此工艺条件下,加氢处理生成油的含硫量由5 571.2 μg/g降至201.1 μg/g,含氮量由12 157.6 μg/g降至1 203.6 μg/g,产品液体收率达到91.2%;与页岩油原料相比,汽油、柴油馏分收率分别提高了7.5,20.4个百分点.  相似文献   

13.
针对中低温煤焦油全馏分原料中机械杂质、金属、芳烃等含量高的特点,开发了煤焦油全馏分低压预处理-固定床加氢提质组合工艺技术。中型试验结果表明:以中低温煤焦油为原料,采用该组合工艺,可生产硫质量分数小于10μg/g的清洁柴油组分,同时副产硫质量分数小于0.5μg/g、氮质量分数小于0.5μg/g、芳烃潜含量(w)达70%以上的可作优质催化重整原料的石脑油组分。所开发的中低温煤焦油全馏分加氢提质技术具有投资低、工艺流程简单、液体收率高和产品质量好等特点,实现了煤焦油资源的清洁利用,为我国煤炭清洁高效利用提供了技术支持。  相似文献   

14.
对中温煤焦油全馏分进行沸腾床加氢处理,将加氢产物经分馏切割出大于355 ℃的馏分或大于400 ℃的馏分,对两者的性质进行分析,并考察大于400 ℃馏分与水上油、煤柴油、页岩油调合的相容性和储存安定性。建立了梯度黏度法,用于评价燃料油的储存稳定性。结果表明:大于355 ℃馏分可直接作为180号船用燃料油;>400 ℃馏分与水上油、煤柴油、页岩油具有较好的相容性,可以作为180#船用燃料油的优质调合组分,在大于400 ℃馏分、水上油、页岩油和煤柴油的比例(质量分数)分别为67%,12%,10%,11%时,能够调合得到满足GB/T 17411标准要求的180号船用燃料油。  相似文献   

15.
在3?300 mL的固定床加氢装置上,以劣质的催化裂化柴油为原料,在氢分压12 MPa、体积空速0.5 h-1、氢/油体积比800:1条件下,考察了反应温度对劣质柴油加氢精制效果的影响;并进一步研究了原料油及加氢精制生成油的窄馏分中烃族组成随馏程的变化规律。结果表明,在反应温度为370 ℃时,加氢精制效果较好,加氢精制生成油的密度为0.865 1 g/cm3,硫质量分数仅为27.51 μg/g,总芳烃脱除率达79.2%,十六烷指数提高15个单位;精制后的各窄馏分中双环及三环芳烃脱除率高达92%以上,而大多数单环芳烃与三环环烷烃集中在285~350 ℃馏分中,因此降低劣质柴油的密度、提高十六烷指数的关键是需要将该馏分段进一步加氢改质。  相似文献   

16.
UDO-01重整生成油选择性加氢催化剂的研制   总被引:1,自引:0,他引:1  
研究了贵金属钯基催化剂在重整生成油选择性加氢脱烯烃反应中的性能。结果表明,在重整生成油全馏分的选择性加氢试验中,单使用Pd作活性组分的Pd/Al2O3催化剂不能满足产品质量要求;采用添加金属助剂对单使用Pd的贵金属催化剂进行改性,助剂的存在大大提高了催化剂的稳定性。在催化剂的开工过程中,催化剂的还原温度低于250℃;可以避免采用预硫化过程;而采用低温进料,程序升温过程可抑制催化剂过高的初活性。UDO-01双金属钯基催化剂可用于不同原料的重整生成油(苯馏分、BTX馏分、全馏分)的选择性加氢脱烯烃反应,加氢后产品的溴值小于200mgBr/(100g)、芳烃损失小于0.5%,且在重整生成油全馏分的选择性加氢过程中表现出良好的稳定性。  相似文献   

17.
我国已查明的页岩储量极为丰富,现有开采及干馏规模也很可观。但页岩油中氧、氮、硫的含量甚高,是其与天然原油的主要区别之一。其中以氮含量最为明显。一般天然原油及抚顺页岩油的元素组成如表1所列。因此,为了制成合格的油品,页岩油需经特殊的加工。目前我国所采用的页岩油精制过程为酸碱洗涤,加氢精制及脱蜡。前二精制过程是针对页岩油中非烃化合物而进行的。加氢精制的效果固然不错,但费用很大,非地方所能普遍兴办的。酸碱精制的油收率很  相似文献   

18.
以中低温煤焦油为原料,先进行高压釜模拟悬浮床加氢预处理,再进行固定床加氢处理,对所得液体产物进行分析。结果表明:中低温煤焦油经悬浮床加氢预处理后,轻质化程度显著提高,再经固定床加氢处理后,所得汽油馏分中C_6~C_9芳烃质量分数达到32.72%,芳烃潜含量为66.15%,适于生产芳烃或用作高辛烷值汽油调和组分;柴油馏分中总芳烃、单环芳烃和双环芳烃质量分数分别为90.9%,46.9%,36.9%,适于进一步加氢改质最大化生产化工原料。  相似文献   

19.
采用三段高压加氢工艺(加氢处理-异构脱蜡-补充精制),以海洋环烷基减压渣油经丙烷脱沥青工艺所得的脱沥青油为原料,生产润滑油基础油。结果表明:在脱沥青油加氢处理反应压力为15 MPa,氢油体积比为1 000∶1,体积空速为0.4 h~(-1),反应温度为385或382℃;异构脱蜡反应压力为15 MPa,氢油体积比800∶1,体积空速为0.8 h~(-1),反应温度为340或345℃;补充精制反应温度为260℃的条件下,所得生成油中大于490℃馏分可达到150 BS光亮油的要求;≥280~360℃馏分可用于生产变压器油基础油;≥360~420℃馏分可用于生产橡胶增塑剂环烷基矿物油产品;≥420~490℃馏分可用于生产橡胶增塑剂环烷基矿物油产品。润滑油馏分总收率占脱沥青油的85%以上,150 BS光亮油收率约占脱沥青油的40%。  相似文献   

20.
许孝玲  汪军平  教震 《润滑油》2014,(6):57-60,64
利用环烷基原油资源,采用加氢处理临氢降凝—加氢补充精制全氢型工艺可生产品质优良的润滑油产品。本研究在加氢中试装置上,对加氢处理后重质润滑油馏分和全馏分两种临氢降凝的进料方式进行了比较。实验结果表明,与以重质润滑油馏分为原料相比,相同反应条件下全馏分油为原料时所得目标产物的倾点、芳烃含量和氮含量更低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号