首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Engaging communities to action under the new climate change regime and fostering citizens to adopt sustainable energy patterns, remains still a challenge. A new impetus for commitment was put in place for local regions, through the Covenant of Mayors (CoM) initiative by the EU communities. The key challenge is the penetration of Renewable Energy Sources (RES), since most rural communities have vast unexploited RES potential (solar, wind, biomass, etc.). RES promotion could also specifically support rural communities’ challenges as regards growth, jobs and sustainability, which are also aggravated by the current financial and economic crisis.One of the most significant steps throughout participating in this initiative is the evaluation of the community's sustainable energy status. Aim of this paper is to assess rural communities’ energy sustainability using the Principal Component Analysis (PCA), based on the outputs of two European “Intelligent Energy For Europe” projects on the following regions: Mountainous and Agricultural Communities and Islands. Appropriate customization of the PCA will be elaborated, to aggregate sustainability indicators, capture related interactions and interdependences. The results of this study can support the monitoring of such communities’ progress, which is an especially valuable parameter as concerns the development and mainly implementation of their Sustainable Energy Action Plans.  相似文献   

2.
After ratification of the Kyoto Protocol, Canada’s Kyoto greenhouse gas (GHG) emission target is 571 Mt of CO2 equivalent emitted per year by 2010; however, if current emission trends continue, a figure of 809 Mt is projected by 2010 (Cote C. Basic of clean development mechanism—joint implementation and overview of CDM project cycle, 2003 regional workshop on CDM-JI, February 2003, Halifax). This underscores the need for additional reduction of 240 Mt. The Federal Government Action Plan 2000 aims to reduce this gap from 240 to 65 Mt (Cote C. Basic of clean development mechanism—joint implementation and overview of CDM project cycle, 2003 regional workshop on CDM-JI, February 2003, Halifax). In order to accomplish this goal, renewable energy use in all sectors will be required, and this type of energy is particularly applicable in power generation. Traditional power generation is a major source of greenhouse gas (GHG) emissions after industrial and transportation sectors (Environment Canada. Canada’s Greenhouse Gas Inventory 1990–1998. Final submission to the UNFCCC Secretariat, 2002 [Available from: http://www.ec.gc.ca/climate/resources_reportes-e.html]. Although wind energy, solar power and other forms of renewable energy are non-GHG emitting in their operation, there are GHG emissions in their different stages of life cycle (i.e. material extraction, manufacturing, construction and transportation, etc.). These emissions must be accounted for in order to assess accurately their capacity to reduce GHG emission and meet Kyoto targets. The current trend in electricity generation is towards integrated energy systems. One such proposed system is the wind–fuel cell integrated system for remote communities. This paper presents a detailed Life Cycle Analysis of the wind–fuel cell integrated system for application in Newfoundland and Labrador.The study confirms that wind–fuel integrated system is a zero emission system while in operation. There are significant emissions of GHGs during the production of the various components (wind turbine, fuel cell and electrolyzer). However, the global warming potential (GWP) of wind-integrated system is far lower (at least by two orders of magnitude) than the conventional diesel system, presently used in remote communities.  相似文献   

3.
P.D. Lund   《Renewable Energy》2007,32(3):442-458
Large-scale global use of new renewable energy sources (RES) necessitates massive physical resources. Present study shows that more than 99.5% of the materials needed in new RES systems are basic construction materials and metals abundantly available. Special elements may constitute future bottle-necks in some PV technologies. The extra financial resources needed over traditional energy to achieve a breakthrough in PV and wind power range from 100 to 500 billion $ for a period of 20–30 years influenced by technology progress and speed of penetration, but in solar heating much less. This upfront support could be paid back within 15–25 years later through cheaper and cleaner energy. Compared to nuclear power the resource numbers estimated are of the same order of magnitude.  相似文献   

4.
Increasing population and life standards causes fossil fuel consumption to increase. Due to this increasing consumption, fossil fuels are being depleted rapidly. In addition to rapid exhaustion, another important problem associated with fossil fuels is that their consumption has major negative impacts on the environment. Therefore, many countries around the world have included renewable energy systems (RES) in their future energy plans so that they can produce reliable and environmentally friendly energy. Parallel to this trend, various RES have been identified and recently integrated into the current energy network of Turkey as well. However, it should be recognized that renewable energy resources are not fully environmentally safe. Different RES are associated with different environmental impacts. In planning the future energy development of a country, evaluation of renewable energy resources potentials together with their associated environmental impacts is critical. The aim of this study is to create a decision support system for site selection of wind turbines using Geographic Information System (GIS) tools. Wind energy potential and environmental fitness/acceptability are used as decision criteria for the site selection process. Potential environmental impacts of wind generation are identified in accordance with Turkish legislations and previous studies; and represented as fuzzy objectives of the decision problem. Wind potential map of Turkey generated by General Directorate of Electrical Power Resources Survey and Development is used to identify economically feasible locations in terms of wind energy generation. A study area composed of Usak, Aydin, Denizli, Mugla, and Burdur provinces in Turkey is selected and divided into 250 m × 250 m grids. Each grid represents an alternative location for a wind turbine or group of wind turbines. Fuzzy environmental objectives such as “Acceptable in terms of noise level”, “Acceptable in terms of bird habitat”, “Acceptable in terms of safety and aesthetics” and “Safe in terms of natural reserves” associated with wind turbines are identified based on previous research and each of these objectives are represented by a fuzzy set. Individual satisfaction degree of each of these environmental objectives for each grid is calculated. Then these individual satisfactions are aggregated into an overall satisfaction degree using various aggregator operators such as “and”, “or”, and “order weighted averaging.” Thus, an overall satisfaction degree of all the environmental objectives is obtained for each grid in the study area. A map of environmental fitness is developed in GIS environment by using these overall satisfaction degrees. Then this map is utilized together with the wind potential map of Turkey to identify both potentially and environmentally feasible wind turbine locations within the study area.  相似文献   

5.
Wind energy systems have been considered for Canada's remote communities in order to reduce their costs and dependence on diesel fuel to generate electricity. Given the high capital costs, low-penetration wind–diesel systems have been typically found not to be economic. High-penetration wind–diesel systems have the benefit of increased economies of scale, and displacing significant amounts of diesel fuel, but have the disadvantage of not being able to capture all of the electricity that is generated when the wind turbines operate at rated capacity.Two representative models of typical remote Canadian communities were created using HOMER, an NREL micro-power simulator to model how a generic energy storage system could help improve the economics of a high-penetration wind–diesel system. Key variables that affect the optimum system are average annual wind speed, cost of diesel fuel, installed cost of storage and a storage systems overall efficiency. At an avoided cost of diesel fuel of 0.30 $Cdn/kWh and current installed costs, wind generators are suitable in remote Canadian communities only when an average annual wind speed of at least 6.0 m/s is present. Wind energy storage systems become viable to consider when average annual wind speeds approach 7.0 m/s, if the installed cost of the storage system is less than 1000 $Cdn/kW and it is capable of achieving at least a 75% overall energy conversion efficiency. In such cases, energy storage system can enable an additional 50% of electricity from wind turbines to be delivered.  相似文献   

6.
J. Domac 《Biomass & bioenergy》2011,35(11):4504-4510
Renewable energy sources (RES) are being increasingly considered as key elements in future development strategies on a national, regional and local level. This paper discusses the methodological approach to local energy planning proposed by the authors and identifies the most important drivers for its application at the regional level. This approach is different to the previous ‘top-down’ or strategic assessments as seen many times in the past in Croatia and is expected to herald a new future for the local community ownership and ‘buy-in’ to renewable energy, resulting in the greater probability of individual project success where local stakeholder sympathy is retained. The implementation of the developed approach is demonstrated on Karlovac County (western Croatia), which has considerable potential for the utilisation of different RES. The main outcomes are described: approved Regional strategy for utilisation of renewable energy sources in the Karlovac County; number of individual projects identified, supported and launched; and a Regional energy agency created as the implementing body for future renewable energy projects.  相似文献   

7.
This paper provides a feasibility analysis of renewable energy supply (RES) for a stand-alone supply large-scale tourist operation (with over 100 beds). The analysis utilises the power load data from a hotel located in a subtropical coastal area of Queensland, Australia. The assessment criteria of the analysis are net present cost, renewable factor and payback time. Due to the limited number of RES case studies in tourist operations and the absence of studies for large resorts, requiring facilities with a higher degree of comfort such as air-conditioning, it is not possible to establish with confidence the viability of RES in this industry. The specific operational characteristics of the tourism accommodation sector, such as 24-h operation, comfort provision and low tolerance for failure necessitates a separate assessment of RES viability for this sector, rather than relying on similar assessments from other commercial sectors. This study uses RES assessment software tools, HOMER (National Renewable Energy Laboratory, US) and HYBRIDS (Solaris Homes, Queensland, Australia), in order to compare diesel generator-only, RES-only and RES/diesel hybrid technologies. HOMER uses hourly load data, whilst HYBRIDS uses average daily energy demand for each month. The modelling results demonstrate that RES, in principle, has the potential to adequately and reliably meet power demand for a stand-alone large-scale tourist accommodation. Optimisation modelling demonstrates that 100% of power demand can be supplied by a RES-only configuration. A hybrid diesel/RES configuration provides the lowest NPC result with a resultant RF of 76%. In comparison to the diesel generator-only configuration, NPC is reduced by 50% and Greenhouse Gas (GHG) emissions by 65%. The payback time of the hybrid RES scenario is 4.3 years. Results indicate that wind energy conversion systems (WECS), rather than photovoltaics, are the most economically viable RES for large-scale operations. Large-scale WECS (over 1000 kW) are more efficient and economical than multiple small-scale WECS (0.1–100 kW). Both modelling tools produced similar results, with HYBRIDS producing on average slightly higher NPC results than HOMER. The modelling and resulting data from the analysis indicate that RES is technically feasible and economically viable as a replacement for conventional thermal energy supply for large-scale tourist operations dependent on stand-alone power supplies.  相似文献   

8.
According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms.  相似文献   

9.
The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated.  相似文献   

10.
This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. 2, 4 and 31). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (Gans et al., 2010). We propose a top–down approach, such as that in Miller et al. (2010), to evaluate the physical–geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. 8, 10 and 52).  相似文献   

11.
The article outlines renewable energy (RE) sources according to the energy efficiency policy in Lithuania as well as practical experience of implementation of RE projects within the framework of the government policy to promote RES use due to the requirement of the European Union. The main goal of the country is to reduce the import of fossil fuel, to improve environment conditions and to reduce the climate change impact. Analysis of implemented RE projects and forecasts for the future projects are also presented. Most of the efforts in Lithuania were aimed at drafting the biomass (wood chips, wood waste, straw, biogas) and small hydro projects and their subsequent implementation. At present the total capacity of wood-chip-fuelled boilers reached above 251 MW. No serious obstacles can be seen for the extension of wood fuel use. At present, new demonstrational projects have been started covering geothermal energy, solar energy, biogas, biofuels for transport and other. In this time, the RE sources comprise 7.69% of national energy balance. Taking into account feasible resources of RE (it is more than 19.85 TWh/year) and the ongoing implementation of projects it is clear that the share of RE sources will constitute 12–13% of national energy balance in 2010 year. The main factor limiting further growth is high investment costs. The electricity production from local and RE sources in Lithuania is mainly based on hydro energy. At this time the wind energy is not used for this purpose. The electricity production from local and renewable energy sources is about 3.22% of the total consumption.  相似文献   

12.
The results of a survey are presented describing the attitudes of Australian tourists to micro-generation renewable energy supply (RES) for hotel accommodation. The average positive response rate to all questions was above 50%, implying a desire by tourists for environmentally friendly accommodation and renewable energy supply. Tourists indicated that they perceived RES to be reliable and expressed a willingness to cooperate with RES initiatives and possible resultant inconveniences. However, there were mixed opinions with regard to consumer willingness to pay for the product. Of the 49% of respondents who were willing to pay extra for RES, 92% replied they would pay between 1% and 5%. Analysis of the variation in response due to accommodation type revealed a ‘city’ hotel versus ‘eco-resort’ difference. Likewise, a breakdown of responses according to country of origin indicated that Australians had a more positive attitude to RES than overseas visitors, including Japanese and Americans. While no variation in response was detected according to gender, age had a measurable bearing on response, with older guests returning a higher positive response rate. Visual queue questions querying aesthetic opinions and ‘not-in-my-backyard’ (NIMBY) attitude to RES revealed that there was virtually no opposition to photovoltaics. Opinions regarding wind energy conversion systems (WECS) varied with type and location, with rooftop WECS receiving more acceptance than stand-alone varieties. A high level of visual acceptance was shown by respondents for onshore wind farms located close to a tourist accommodation centre, with less enthusiasm for offshore farms. A strong NIMBY attitude to WECS was not observed among Australian or local respondents.  相似文献   

13.
Electrification systems based on renewable energy have proven suitable for providing electricity autonomously to rural communities. Among the technical options available, wind systems are increasingly getting attention. In the northern mountains of Peru, at 3800 m.a.s.l., three community wind electrification projects have been implemented. The technical solutions used in each project are different: wind vs. hybrid photovoltaic-wind systems; individual equipment vs. microgrids. This study aims to describe, evaluate and compare these three small-scale community wind electrification projects. The evaluation of the three projects was carried out by comparing previous and present scenario; attention has been focused on project design and technical aspects, socio-economic impacts and sustainability and management model. These three examples shed light on both the advantages and disadvantages of different technological options as well as on appropriate community-level management models.  相似文献   

14.
There are considerable benefits from cooperating among member states on meeting the 2020 renewable energy sources (RES) targets. Today countries are supporting investments in renewable energy by many different types of support schemes and with different levels of support. The EU has opened for cooperation mechanisms such as joint support schemes for promoting renewable energy to meet the 2020 targets. The potential coordination benefits, with more efficient localisation and composition of renewable investment, can be achieved by creating new areas/sub-segments of renewable technologies where support costs are shared and credits are transferred between countries.Countries that are not coordinating support for renewable energy might induce inefficient investment in new capacity that would have been more beneficial elsewhere and still have provided the same contribution to meeting the 2020 RES targets. Furthermore, countries might find themselves competing for investment in a market with limited capital available. In both cases, the cost-efficiency of the renewable support policies is reduced compared to a coordinated solution.Barriers for joint support such as network regulation regarding connection of new capacity to the electricity grid and cost sharing rules for electricity transmission expansion are examined and examples given. The influence of additional renewable capacity on domestic/regional power market prices can be a barrier. The market will be influenced by for example an expansion of the wind capacity resulting in lower prices, which will affect existing conventional producers. This development will be opposed by conventional producers, whereas consumers will support such a strategy.A major barrier is the timing of RES targets and the uncertainty regarding future targets. We illustrate the importance of different assumptions on future targets and the implied value of RES credits. The effect on the credit price for 2020 is presented in an exemplary case study of 200 MW wind capacity.  相似文献   

15.
David Berry   《Energy Policy》2009,37(11):4493-4499
In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999–2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.  相似文献   

16.
Satellite-derived solar resource maps for Brazil under SWERA project   总被引:2,自引:2,他引:0  
The SWERA project is an international project financed by GEF/UNEP which aims at providing a consistent and easily accessible database to foster the insertion of renewable energies on the energy matrix of selected pilot countries. In Brazil, the project is now at the stage of formatting information, validating of solar and wind resource assessment models, and ancillary GIS data integration. Solar energy resource maps in Brazil were generated using the satellite radiation model BRASIL-SR and the NREL’s CSR (climatological solar radiation) model. This paper describes the methodology used to produce the solar maps using the BRASIL-SR radiation model and discusses the seasonal and yearly means of daily solar irradiation maps obtained for 1995–2002 period.  相似文献   

17.
Pakistan energy situation is seriously troubling today due to lack of careful planning and implementation of its energy policies. To avoid the worse situation in the years ahead, the country will have to exploit its huge natural renewable resource. In this paper a review is being presented about renewable energy resource potential available in the country to be exploited for useful and consistent energy supplies. On average solar global insolation 5–7 kWh/m2/day, wind speed 5–7.5 m/s, Biogas 14 million m3/day, microhydel more than 600 MW (for small units) with persistency factor of more than 80% over a year exist in the country. Solar and wind maps are presented along with identification of hot spring sites as resource of geothermal energy. The research results presented in this paper are not only useful for government policy makers, executing agencies but also for private sector national and international agencies and stake holders who want to invest in Pakistan for renewable energy projects or business.  相似文献   

18.
When it comes to the energy planning, computer programs like H2RES are becoming valuable tools. H2RES has been designed as support for simulation of different scenarios devised by RenewIsland methodology with specific purpose to increase integration of renewable sources and hydrogen into island energy systems. The model can use wind, solar, hydro, biomass, geothermal as renewable energy sources and fossil fuel blocks and grid connection with mainland as back up. The load in the model can be represented by hourly and deferrable electricity loads of the power system, by hourly heat load, by hydrogen load for transport and by water load depending on water consumption. The H2RES model also has ability to integrate different storages into island energy system in order to increase the penetration of intermittent renewable energy sources or to achieve a 100% renewable island. Energy storages could vary from hydrogen loop (fuel cell, electrolyser and hydrogen storage) to reversible hydro or batteries for smaller energy systems. The H2RES model was tested on the power system of the Island of Porto Santo – Madeira, the islands of Corvo, Graciosa, and Terrciera – Azores, Sal Island – Cape Verde, Portugal, the Island of Mljet, Croatia and on the energy system of the Malta. Beside energy planning of the islands, H2RES model could be successfully applied for simulation of other energy systems like villages in mountain regions or for simulation of different individual energy producers or consumers.  相似文献   

19.
Availability of wind energy and its characteristics at Kumta and Sirsi in Uttara Kannada District of Karnataka has been studied based on primary data collected at these sites for a period of 24 months. Wind regimes at Karwar (1952–1989), Honnavar (1939–1989) and Shirali (1974–1989) have also been analysed based on data collected from India Meteorological Department (IMD) of respective meterological observatories. Wind energy conversion systems would be most effective in these taluks during the period May to August. The monthly frequency distributions of wind speed have been analysed for Kumta and Sirsi where hourly wind speed recording is available. It is shown that two parameter Weibull distribution is a good representation of the probability density function for the wind speed. Energy Pattern Factor (EPF) and Power Densities are computed for sites at Kumta and Sirsi. With the knowledge of EPF and mean wind speed, mean power density is computed for Karwar, Honnavar and Shirali. Our analyses show that the coastal taluks such as Karwar and Kumta have good wind potential. This potential, if exploited would help local industries and coconut and areca plantations. Premonsoon availability of wind energy would help in irrigating these orchards and makes the wind energy a desirable alternative.  相似文献   

20.
The multidimensional character of renewable energy sources (RES) necessitates the collection of a number of related data in order to support EU policy needs. Apart from the technology and techno-physical data also socioeconomic (e.g. employment, turnover) data and R&D expenditures are of critical relevance. The monitoring of the above RES data with respect to the existing targets for RES is of significant importance. In addition to this, even though significant data gathering efforts have been implemented, a lot of fragmented data and deduced findings are currently available, which sometimes lack consistency and verification. As a result, RES data validation and completion capacity is needed in the framework of the European Union (EU) energy policy. In addition to this, agreed and validated RES data can help energy policy makers and relevant stakeholders answering to pressing energy socio-economics’ and sustainability issues. In this context, the main aim of the paper is to present a reference methodology for validating the RES Data in the EU. The development of the methodology is mainly based on the review of existing methods and ends up with recommendations for improvements in RES data aggregation and statistical interpretation, taking into consideration the related analysis of statisticians, energy technology experts and energy socio-economists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号