首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to obtain more accurate measurements of cell survival after low doses of radiation, we have used the cell sorter assay, in which a cell sorter is used to accurately count out the number of cells plated for colony formation. This method, combined with data averaging, permits measurements of survival with superior precision, which have revealed that there is substructure in the radiation response of asynchronously dividing Chinese hamster cells. The substructure, observed at doses of a few Gy, has features of a 2-component response, consistent with the presence of subpopulations of cells of different cell-cycle-related radiosensitivity. The absence of any substructure in the radiation response of homogeneous (tightly synchronized) cell populations lends strong support to this subpopulation explanation of the substructure. This assay has also been used on a variety of human tumour cell lines, most of which exhibited substructure similar to that of Chinese hamster cells. This paper outlines the application of the cell sorter assay to three different problems: (i) radiosensitizer mechanisms-etanidazole and RB 6145 are shown to enhance primarily the beta term and alpha term, respectively, of tumour cell kill, indicating that sensitizer efficacy may be tumour-specific and predictable from tumour response parameters; (ii) accurate measurement of Relative Biological Effectiveness (RBE) in a modulated clinical proton beam shows that the RBE is both dose- and depth-dependent; and (iii) measurements at lower doses clearly demonstrate a second order of substructure, termed the hypersensitive response, at doses < 1 Gy.  相似文献   

2.
Survival measurements were made on six human tumour cell lines in vitro after irradiation with single doses of X rays. Doses up to 5 Gy were used giving surviving fractions down to 20%, but the majority of the measurements were made at doses < 1 Gy. These six cell lines have very different intrinsic radiosensitivities: HT29, Be11, and RT112 are radioresistant with surviving fractions at 2 Gy (SF2) between 60 and 74%, while MeWo, SW48, and HX142 are radiosensitive (SF2 = 3-29%). For all the cell lines, response over the dose range 2-5 Gy showed a good fit to a Linear-Quadratic (LQ) model. However, HT29, Be11, and RT112 cells showed a significant increase in X-ray radiosensitivity at doses below < 1 Gy compared with the prediction extrapolated from a LQ model fitted to the data at higher doses. The LQ model also slightly underpredicted the effect of low-dose X rays in MeWo cells, but the response of SW48 and HX142 cells was well described by the LQ model at all doses, with no evidence of increased low-dose effectiveness. The most plausible explanation for this phenomenon is that it reflects an induced radioresistance so that low doses of X-rays in vitro are more effective per Gy than higher doses, because only at higher doses is there sufficient damage to trigger repair systems or other radioprotective mechanisms. It follows that variation in the amount of inducible radioresistance might explain, in part, differences in intrinsic radiosensitivity above > 1 Gy between cell lines: cells would be intrinsically radiosensitive because they have a diminished inducible response.  相似文献   

3.
PURPOSE: To model the influence of hypoxic radioprotection in fractionated treatments over a range of fraction sizes. To determine whether there is a "therapeutic window" of dose per fraction where hypoxic radioresistance could be reduced, and if so, where it occurs in different cell lines. MATERIALS AND METHODS: A mathematical model has been used to simulate the response of cells to low doses of radiation, in the region of clinical interest. We have used the inducible repair variant of the linear quadratic (LQ) equation, with a hypersensitive region (alphaS) at low doses that gradually transforms to the accepted "resistance" in the shoulder region (alphaR). It contains two new parameters, the ratio alphaS/alphaR, and D(C). We have accepted that the "induction dose" D(C) is modified by anoxia to the same extent as the other parameters. We have initially modeled using theoretical parameters and then checked the conclusions with 14 sets of published experimental data for cell lines investigated for inducible repair. RESULTS: We have computed the clinical hypoxic protection (OER') as a function of dose per fraction in simulations of clinical fractionated schedules. We have identified a therapeutic window in terms of dose per fraction at about 0.5 Gy, where the OER' is minimized, regardless of the precise cell survival curve parameters. The minimum OER' varies from one cell line to another, falling to about 1.0 if alphaS/alphaR = 6-10 and even far below 1.0 if alphaS/alphaR > or = 20. DISCUSSION: Hyperfractionation using 0.5 Gy fractions may therefore be more effective than oxygen mimetic chemical sensitizers, since it could even make some tumor cells more sensitive than oxic normal tissues. The tumor lines that benefit most from this type of sensitization are those with the highest intrinsic oxic radioresistance, i.e. those with high SF2 values.  相似文献   

4.
Seven new low-passage melanoma lines were developed in this laboratory from clinical melanoma specimens and characterised for chromosome complement, DNA ploidy and S-phase content. The radiosensitivity of these lines was compared with that of eight established melanoma cell lines, FME, MM-96, SK-MEL-5, SK-MEL-28, SK-MEL-2, MALME-3M, M19-MEL and LOX-IMVI, using a 96-well microculture assay technique. Dose-response curves were determined using a 5-day incubation period and 6-h terminal [3H]thymidine-labelling period. Radiation (60Co source) was carried out under a lead wedge to provide a radiation dose range of 0-10 Gy, or by irradiating part of the plate (radiation dose 0 or 2 Gy). Data for a range of cell densities in a single 96-well plate were combined into a single regression equation incorporating linear quadratic terms for radiation dose and cell density. SF2 values were defined as the amount of thymidine incorporated following a radiation dose of 2 Gy, expressed as a fraction of that of unirradiated cells, and varied from 0.36 to 0.93. The reproducibility in repeat assays, as defined by the standard error of determinations at different passage numbers, was +/- 0.04. The newly developed lines exhibited a similar range of radiosensitivity to that of the established lines, and melanin content did not correlate with resistance. For nine of the lines, radiation parameters were also determined using a modified Courtenay clonogenic soft agar assay technique, and the results compared with the thymidine incorporation results, and a significant linear correlation was found between SF2 and SF2' (r = 0.89). The linear (alpha) and quadratic (beta) terms of the best-fit linear quadratic dose-response curves, were significantly correlated between the two assays. It is concluded for this series of human melanoma lines that proliferation assays in 96-well plates provide radiosensitivity parameters comparable to those using clonogenic assays.  相似文献   

5.
PURPOSE: The relative biological effectiveness (RBE) for inactivation of V79 cells was determined as function of dose at the Heidelberg 14-MeV (d + T) neutron therapy facility after irradiation with single doses in air and at different depths in a therapy phantom. Furthermore, to assess the reproducibility of RBE determinations in different experiments we examined the relationship between the interexperimental variation in radiosensitivity towards neutrons with that towards low LET 60Co photons. METHODS: Clonogenic survival of V79 cells was determined using the colony formation assay. The cells were irradiated in suspension in small volumes (1.2 ml) free in air or at defined positions in the perspex phantom. Neutron doses were in the range, Dt = 0.5-4 Gy. 60Co photons were used as reference radiation. RESULTS: The radiosensitivity towards neutrons varied considerably less between individual experiments than that towards photons and also less than RBE. However, the mean sensitivity of different series was relatively constant. RBE increased with decreasing dose per fraction from RBE = 2.3 at 4 Gy to RBE = 3.1 at 0.5 Gy. No significant difference in RBE could be detected between irradiation at 1.6 cm and 9.4 cm depth in the phantom. However, an approximately 20% higher RBE was found for irradiation free in air compared with inside the phantom. Combining the two effects, irradiation with 0.5 Gy free in air yielded an approximately 40% higher RBE than a dose of 2 Gy inside the phantom. CONCLUSION: The measured values of RBE as function of dose per fraction within the phantom is consistent with the energy of the neutron beam. The increased RBE free in air, however, is greater than expected from microdosimetric parameters of the beam and may be due to slow recoil protons produced by interaction of multiply scattered neutrons or to an increased contribution of alpha particles from C(n, alpha) reactions near the surface. An enhanced RBE in subcutaneous layers of skin combined with an increase in RBE at low doses per fraction outside the target volume could potentially have significant consequences for normal tissue reactions in radiotherapy patients treated with fast neutrons.  相似文献   

6.
PURPOSE: Evaluation of the theoretical and practical value of using low-dose rate (LDR) irradiation to increase the resolution of radiosensitivity testing of primary human tumors using clonogenic assays. METHODS AND MATERIALS: Fourteen human tumor cell lines were assessed for surviving fraction at 2-8 Gy (SF2-SF8) using low-dose rate irradiation and a clonogenic assay. Further data were collected from the literature for 64 low-dose rate irradiation survival curves from human tumor cell lines. The data were grouped into five different radioresponsiveness categories (A-E). An analysis was made of the ability of the graded survival levels to discriminate between the different radioresponse groups and compared with previous analyses for high-dose rate SF2. Fifteen human cervical carcinoma specimens were analysed for SF2 and SF3.5 following high- and low-dose rate irradiation. RESULTS: Low-dose rate irradiation increased the spread of tumor cell line radiosensitivity data and the ability to discriminate between radioresponse groups was greater at low than at high-dose rates. Using low-dose rate irradiation on primary tumor specimens and a soft agar clonogenic assay decreased the success rate in obtaining data. The latter dropped from 70% for high-dose rate SF2 to 51% for low-dose rate SF3.5. CONCLUSIONS: The work on cell lines illustrates that low-dose rate irradiation does improve the ability of clonogenic radiosensitivity measurements to discriminate between tumors of different radioresponsiveness groups. However, using low-dose rate irradiation on primary human tumors with a soft agar clonogenic assay was not practical because of reducing the success rate for obtaining data for radiosensitivity measurements.  相似文献   

7.
Confluent cultures of CHO-K1 and CHO-xrs5 cells were irradiated attached to 6 microm Mylar with 137Cs gamma rays and 200 kVp X rays adjacent to scattering materials consisting of polystyrene, glass, aluminum, copper, tin and lead. The absorbed dose in cell nuclei was estimated from measurements of backscattered dose made with a parallel-plate ion chamber with a 5-microm Mylar window and a gas volume whose thickness was equivalent to approximately 2.6 microm of cells or tissue. Cell inactivation after various doses was measured by clonogenic assays after trypsinization and enumeration. Survival curves constructed from data pooled from at least two independent experiments were best fitted to a linear-quadratic (LQ) or a linear equation for CHO-K1 and CHO-xrs5 cells, respectively. An average distance of 9.3+/-1.9 microm from the scattering surfaces to the midline of nuclei for both the cell lines was estimated from electron micrographs of fixed cell sections. The major differences in biological effect observed when the cells were irradiated adjacent to these materials could be largely explained by the differences in the physical dose. Further analyses using the LQ equation suggested additional biological effects with implications for the mechanisms involved. CHO-K1 cells showed a small but consistent increase in the low-dose (alpha-inactivation coefficient) mechanism for both radiations scattered from high-Z material. An increased value of the alpha coefficient suggests an increase in RBE which could be associated with a higher proportion of low-energy and track-end electrons in these fields. The radiation fields which produced maximum single-hit killing in CHO-K1 cells also produced less killing by the quadratic (beta-inactivation coefficient) mechanism. In contrast, when similarly irradiated, CHO-xrs5 cells exhibited significantly lower alpha coefficients of inactivation. The mechanistic basis for this opposite effect of backscattered radiations in these cell lines is as yet unknown.  相似文献   

8.
Cultured skin fibroblasts from five patients with atherosclerosis who underwent coronary artery bypass graft surgery were compared with those from one ataxia telangiectasia (AT) homozygote, three AT heterozygotes, and five healthy subjects to determine their sensitivity to gamma radiation as determined by a colony survival assay. Fibroblasts from four of these patients were also compared with those from two AT homozygotes, two AT heterozygotes, and three healthy subjects to determine postirradiation [3H]thymidine incorporation, indicating the levels of radioresistant DNA synthesis (RDS). On the basis of colony survival assay, after long-term irradiation (at low dose rate, ie, 0.007 Gy/min), fibroblasts from all five patients with atherosclerosis exhibited radiosensitivity that was intermediate between that of the healthy subjects and that of patients with the known radiosensitive syndrome AT. However, there was a considerable interstrain difference in the radiosensitivity of fibroblasts from patients with atherosclerosis, with their mean D10 values (radiation dose resulting in 10% cell survival) varying between 2.3 and 6.2 Gy, whereas the mean D10 values for the cells from the AT homozygote, AT heterozygotes, and healthy subjects were 2.0, 3.8, and 9.0 Gy, respectively. One of the patients with atherosclerosis showed cellular radiosensitivity quite similar to that of the AT homozygote, up to 2% to 10% of survival levels after short- (at a dose rate of 8 Gy/min) and long-term irradiation, respectively. The results of [3H]thymidine incorporation showed an AT heterozygote-like RDS in fibroblasts from patients with atherosclerosis that appeared to be intermediate between that of AT homozygotes and that of healthy subjects, suggesting a partial deregulation of cell cycle in the patients with atherosclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The induction of cytogenetic damages after irradiation with single dose of gamma-rays (0.1-2 Gy) have been studied. It is shown non-linear curve for the induction of chromosome aberrations, detected by anaphase method. After irradiation in S-stage of the cell cycle at dose below 0.2 Gy the cells were more radiosensitive than after irradiation with doses 0.3-2 Gy. Between the phases of high radiosensitivity and radioresistance the reversal dose-effect relation was observed. This phenomenon was not marked for the cells after irradiation in G2-stage of the cell cycle. It is possible, this results could reflect an induced radioresistance at low dose of irradiation.  相似文献   

10.
PURPOSE: To investigate (1) the radiosensitivity of B versus T lymphocytes with respect to micronucleus (MN) induction and (2) the possible application of the B cell MN assay for biological dosimetry of individuals after acute exposure to low doses of ionizing radiation. MATERIALS AND METHODS: MN analysis was performed in T and B lymphocytes of six healthy volunteers exposed in vitro to gamma-ray doses ranging from 0.05 Gy to 1 Gy. For the MN assay on B cells, peripheral blood mononuclear cells were cultured and stimulated with pokeweed mitogen (PWM). Afterwards the B lymphocytes (characterized by the CD20+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binucleate cells was scored. For T lymphocytes the standard MN protocol was applied. RESULTS: The number of spontaneous and radiation induced MN were significantly higher in B lymphocytes compared to T lymphocytes in the low dose range up to 1 Gy. An analysis of the present data showed that when the spontaneous MN frequencies are not known, doses from 0.08 Gy could be detected with the B cell MN assay while the conventional MN assay only allowed detection of doses > 0.25 Gy. However, in contradiction to the linear-quadratic dose-response for T cells, for B cells the initial steep increase of the MN yield with the very low dose was followed by a flattening of the curve towards higher doses. CONCLUSION: This study shows that B lymphocytes express a high number of MN for doses up to 1 Gy gamma-rays reflecting the highly radiosensitive behaviour of B cells. The results also point to the possible application of the B-cell MN assay for individual dose assessment. When blood samples can be taken within 24 h after acute accidental overexposure, the B-cell MN assay can be performed but only as a supplementary test to the conventional MN assay.  相似文献   

11.
To determine the relationship between epidermal growth factor receptor (EGFR) and radiosensitivity, we immunostained cells from three maxillary carcinoma cell lines with an anti-EGFR antibody. The intensity of staining reactivity, determined by means of an image analysis system, was expressed as grey value (0-black to 255-white). The mean grey values for cell lines IMC-2, IMC-3, and IMC-4 were 181, 210, and 222, respectively, and differed significantly (p < 0.001). This indicates that IMC-2 had the highest number of EGFR, followed by IMC-3 and IMC-4. The cells were then irradiated at 1, 2, 4, or 6 Gy, and cell survival was assessed by means of a standard colony-forming assay. IMC-2 had the highest survival rates at 1, 2 and 4 Gy, followed by IMC-3 and IMC-4. Therefore, the survival rates for IMC-2, IMC-3, and IMC-4 after irradiation increased in proportion to the amount of EGFR in each cell line. These results support the findings of previous clinical studies which showed that increased expression of EGFR was associated with higher recurrence rates of glottic and maxillary sinus carcinoma in patients treated with radiation therapy. The amount of EGFR in cells may therefore be associated with their radiosensitivity.  相似文献   

12.
Fractionated and low-dose-rate total-body irradiation (TBI) were compared with single-dose high-dose-rate TBI for induction of long-term hemopoietic chimerism in a murine syngeneic bone marrow transplantation model. At 5 months after TBI and bone marrow transplantation, the degree of stable blood chimerism was determined from the proportion of stem cell-derived donor (B6-Gpi-1a) and host (B6-Gpi-1b) blood erythrocytes. This end point was used to construct radiation dose-response curves for long-term donor marrow engraftment corresponding to ablation of primitive bone marrow stem cells of the host. Increasing dose fractionation and decreasing dose rate had the effect of restoring host hemopoiesis and required higher TBI doses for equal donor engraftment. Most of the dose recovery occurred within the first 6 h between fractions, consistent with the kinetics of sublethal damage repair. The late chimerism data were fitted to the linear-quadratic model using indirect and direct analysis for a fixed threshold response. Both analyses gave relatively low alpha/beta ratios (below 2 Gy), within the range normally seen in late-responding tissues. The dose-rate data gave a repair half-time of 2 h as estimated by the incomplete-repair model. These estimates contrast with the much higher alpha/beta values and lower repair half-times derived from acute hemopoietic failure as indicated by LD50/30, with the implication that separate target cell populations with differing radiosensitivities are involved in these two bone marrow end points.  相似文献   

13.
The aim was to determine the influence of initial dose and dose per fractionation on retreatment tolerance of the kidney. Mouse kidney was bilaterally irradiated with various single or fractionated X-ray doses equivalent to about 12-70% of a defined response dose. The mice were retreated with a range of single doses after 2 or 26 weeks. The development of functional kidney damage was followed by monthly testing of clearance of 51CrEDTA until the animals expressed overt renal dysfunction (maximum follow-up 70 weeks after retreatment). Reirradiation tolerance was assessed by probit analysis and Kaplan-Meier actuarial estimates of the incidence of a defined level of renal damage at 40 weeks after retreatment. Doses required to give a 50% incidence of damage (RD50) were compared for animals that had received previous single dose or fractionated irradiations, or that were previously unirradiated. Multivariate analysis of time to expression of renal damage (latency) was also done using the Cox Proportional Hazards model. Results demonstrated that previous irradiation always compromised retreatment tolerance, even for intervals of 26 weeks after initial treatments with < 20% full response dose. Reirradiation tolerance was inversely related to the initial dose and tolerance decreased significantly with increasing interval between treatments, suggesting progression rather than recovery from the initial damage. Linear-quadratic analysis of the data for reirradiation at 26 weeks after partial-response doses gave an alpha/beta = 1.4 Gy. This was significantly lower than the alpha/beta = 3.3 Gy obtained for initial treatments alone (no retreatment), indicating a larger fractionation-sparing effect for the retreatment situation.  相似文献   

14.
The use of cisplatin (CDDP) as a potential radiosensitizer in tumors is controversial. Reports about CDDP interaction with radiation range from high radiosensitization to a clear sub-additive effect. We examined the effect of the combination of different concentrations of CDDP with radiation in murine mammary adenocarcinoma (EMT-6) and human ovarian carcinoma (OV-1063) cell lines. CDDP was given in the dose range of 0.01-3.0 micrograms/ml and radiation in the dose range of 1-6 Gy. A methylene blue assay of cell density was used for the evaluation of cell survival and rate of proliferation in 96-microwell plates. The validity of this assay for evaluation of cell survival was verified by colony-forming assay and radiolabeled thymidine uptake. The dose response to CDDP for both OV-1063 and EMT-6 cells lines was examined; the ID50 was 0.06 and 0.9 micrograms/ml respectively. A sub-additive effect of the combination of radiation with CDDP was clearly observed in the two cell lines tested; the increase in dose of each modality resulted in a decrease of the relative contribution on the effect of the other. These findings question the rationale of combining CDDP with radiation for the enhancement of tumor response, since with the increase in the dose of either modality the additional effect of the other decreases.  相似文献   

15.
PURPOSE: Present radiobiological studies for different cell lines in vitro demonstrate the equivalence and efficacy of continuous low-dose-rate brachytherapy (LDR-BT) and pulsed dose rate brachytherapy (PDR-BT) when using small and frequent dose pulses. The aim of this study was to examine monolayer fibroblast cultures in vitro to examine the biological effects of different pulse doses and dose rates under clinically conditions. MATERIAL AND METHODS: B14 cells, Hy B14 FAF 28, peritoneal fibroblasts, were cultured in multi-well plates and exposed to a PDR radiation source at a distance of 9 mm. The following PDR-schemes were compared: dose per pulse: 1 Gy, 2.5 Gy and 5 Gy to a total dose of 5 Gy/5 h (overall time), 10 Gy/10 h, 20 Gy/20 h and 30 Gy/30 h. The pulse duration for the examination of dose rate effects was 20 min, 30 min or 52 min corresponding by dye pulse dose rate of 300 cGy/h, 200 cGy/h or 115 cGy/h. Treatment endpoints were cell measured by dye exclusion test and clonogenic cell survival. RESULTS: Cell survival decreased for pulse doses of 5 Gy compared to 2.5 Gy or 1 Gy per pulse (mean dose rate 200 to 300 cGy/h). No differences were observed with dose rates during irradiation of 300 cGy/h, 200 cGy/h or 115 cGy/h (20 Gy/1 Gy). CONCLUSION: Radiobiological effects of PDR-RT are dependent on the dose per pulse, with differences in biological effects only with a dose per pulse of more than 2.5 Gy, considering the described in-vitro conditions. More examinations with a more pronounced difference in dose rate will be continued for evaluation of dose rate effects.  相似文献   

16.
We have investigated the properties of an in vitro cell survival assay that uses as its endpoint the ability to form polyploid cells (polykaryons) in the presence of cytochalasin B (CB). The criterion for survival is that a polykaryon-forming unit (PFU) must reach the arbitrary DNA content of at least 16C. The age-dependence of PFU sensitivity to 137Cs irradiation was determined using V79-379A cells synchronized at mitosis. Cells assayed as PFUs demonstrated much less variation in radiosensitivity with age than did clonogens, but the changes in curve shape were qualitatively similar. In both assays mitotic cells yielded an exponential survival curve while that obtained at 5 h (mid-late S) had a marked quadratic component. Owing to the small overall variation in PFU survival with age, at doses greater than about 25 Gy the surviving fraction at 5 h was lower than in mitosis. In both V79-379A and HeLa S3 cells, PFUs demonstrated a capacity for split-dose recovery and yielded recovery ratios at 2.6 at 50 Gy in V79 and 1.5 at 20 Gy in HeLa. Since these ratios were much lower than in clonogens at the same dose, we suggest that this is consistent with an association that we have previously demonstrated between PFU response and the clonogenic initial slope. In an attempt to clarify the DNA lesions to which PFUs may be sensitive, we determined PFU response following exposure to 254-nm UV irradiation. In contrast with ionizing radiation, PFU response to UV was very similar to that of clonogens. This suggests that following UV exposure the absence of cytokinesis in polykaryons may confer less protection than in the case of ionizing radiation, possibly due to fundamental differences in the spectrum of DNA lesions produced.  相似文献   

17.
The objectives of this study were to (a) extend previous bone-marrow cell kinetics models that have been published for ionizing photons to include neutron radiations, and (b) provide Relative Biological Effectiveness (RBE) values for time-specific cell killing (cytopenia) and compensatory cellular proliferation (repopulation in response to toxic injury) for neutron doses ranging from 0.01 to 4.5 Gy delivered uniformly over one minute, hour, day, week, and month. RBEs for cytopenia of a cell lineage were based on ratios of protocol-specific doses that determined the same cell population nadir, whereas the RBEs for repopulation of a lineage were based on the ratios of protocol-specific doses that corresponded to the same total number of cells killed over the radiation treatments, and which should be replaced for long-term survival of the animal. Time-dependent RBEs were computed for neutron exposures relative to the effect of 60Co gamma rays given as a prompt dose. By the use of these RBE factors, low or variable dose rates, dose fractionations given over long periods of time, and different protocols involving several radiation qualities can be converted realistically, and by standard convention, into an equivalent dose of a reference radiation comprised of x or gamma rays given either as a pulse or at any other reference dose rate for which risk information based on epidemiological or animal dose-response data are available. For stromal tissues irradiated by fission neutrons, time-dependent RBEs for cytopenia were computed to range from 4.24 to 0.70 and RBEs for repopulation varied from a high of 6.88 to a low of 2.24. For hematopoietic stem cells irradiated by fission neutrons, time-dependent RBEs for cytopenia were computed to range from 5.02 to 0.22 and RBEs for repopulation varied from a high of 5.02 to a low of 1.98. RBEs based on tissue-kerma-free-in-air would be about twofold lower for isotropic cloud or rotational exposure geometries because marrow dose from isotropic neutron fields suffer factor-of-two greater attenuation than the gamma doses from gamma photons. For certain doses and dose rates, the RBE values computed for compensatory cellular proliferation clearly demonstrate the behavior that is commonly referred to as an inverse dose-rate effect, i.e., protraction of exposure may-under certain conditions-increase the magnitude of the dose response. Furthermore, because of non-linear rates for repair and repopulation, the highest RBEs are not necessarily found for the lowest doses nor the lowest RBEs always found at the highest doses.  相似文献   

18.
The dose-dependent effects of gamma-radiation on the leucocyte cultures L-41 has been investigated. Irradiation by the dose of 0.25 Gy stimulates the cell proliferation while that by the doses of 1.0 and 2.0 Gy inhibits this process. In this dose range the radiohormesis effects characterizing structural organization of the probed membranes have been also registered for fluorescence parameters. The zone of qualitative transition of response of the cell membranes to radiation is individual for various effects. The action of radiation in the doses of 0.25 and 0.50 Gy induces a decrease of ANS fluorescence intensity and a decrease of membrane protein immersion in the lipid bilayer of leukocyte membranes. The values of these parameters rise at the doses of 1.0 and 2.0 Gy that reflects different directions of structural changes in various membrane regions. The irradiation in the range of 0.25-1.0 Gy induces the increase of microviscosity in deep regions of membrane lipid matrix while at the dose 2.0 Gy it causes its decrease. Radioactive radiation does not change the membrane protein conformation of leukocytes and polarity of lipid bilayer hydrophobic zones as recorded by fluorescent methods used.  相似文献   

19.
The purpose of this study is to evaluate the radiation sensitivity of human soft tissue sarcoma cell lines in vitro and to compare with that of human breast carcinoma and glioblastoma cell lines. The intrinsic radiation sensitivity parameters of seven human soft tissue sarcomas and eight breast carcinoma cell lines were investigated in vitro by clonogenic assays for single-dose irradiation under aerobic conditions on cells in exponential phase of growth. The results for sarcoma cell lines showed that the mean surviving fraction at 2 Gy (SF2) was 0.39 (SD +/- 0.09) with a range of 0.24 to 0.53, and the average mean inactivation dose (MID) was 1.92 (SD +/- 0.35) range from 1.36 Gy to 2.49 Gy. These values were not different from that of breast cell lines examined concurrently and using the same experimental methods (mean SF2 0.38, SD +/- 0.09; MID 1.9 Gy, SD +/- 0.37). However radiobiological parameters of nine karyotyped human malignant glioma cell lines determined earlier in this laboratory were significantly higher (mean SF2 0.50 +/- 0.14; mean MID 2.61 +/- 0.60). In conclusion, the data presented here do not support the view that cells of sarcomas show unusual radiation resistance. To the extent that the in vitro determined cellular radiation sensitivity reflects the tumor response in vivo, the success rate for radiation applied against sarcoma and breast carcinoma of comparable size could be similar.  相似文献   

20.
Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitive. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Dose response experiments for damage induction correlated well with the results using prelabelled cells. Linear DNA damage induction curves were observed with a sensitivity for the post-labelling method of 1 Gy. No differences in DSB induction were found, however, between the radiosensitive SCC61 and the radioresistant SQ20B cell line. Repair experiments were carried out with trypsinized cells with different doses and repair temperatures. The 10, 25 and 50 Gy doses resulted in 6, 13 and 50% of the DNA migrating out of the plug at 0 h. For both the cell lines 75-85% of the initial damage was repaired within 1 h at 37 degrees C at all three radiation doses, i.e. no significant differences were observed in repair rates or extent between the two cell lines. At 24 degrees C repair was slower than at 37 degrees C, and at 0 degree C no repair was observed. In summary, radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号