首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   

2.
In this paper, we initiate the study of a variation of standard domination, namely total restrained domination. Let G=(V,E) be a graph. A set DV is a total restrained dominating set if every vertex in VD has at least one neighbor in D and at least one neighbor in VD, and every vertex in D has at least one neighbor in D. The total restrained domination number of G, denoted by γtr(G), is the minimum cardinality of all total restrained dominating sets of G. We determine the best possible upper and lower bounds for γtr(G), characterize those graphs achieving these bounds and find the best possible lower bounds for where both G and are connected.  相似文献   

3.
A path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path between any two distinct vertices of G. The degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by δ(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant hamiltonian connected if GF is hamiltonian connected for every FE(G) with |F|?k and δ(GF)?3. The conditional edge-fault tolerant hamiltonian connectivity is defined as the maximum integer k such that G is k edge-fault tolerant conditional hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n?4. We use Kn to denote the complete graph with n vertices. In this paper, we show that for n∉{4,5,8,10}, , , , and .  相似文献   

4.
Let G=(V,E) be a finite graph, and be any function. The Local Search problem consists in finding a local minimum of the function f on G, that is a vertex v such that f(v) is not larger than the value of f on the neighbors of v in G. In this note, we first prove a separation theorem slightly stronger than the one of Gilbert, Hutchinson and Tarjan for graphs of constant genus. This result allows us to enhance a previously known deterministic algorithm for Local Search with query complexity , so that we obtain a deterministic query complexity of , where n is the size of G, d is its maximum degree, and g is its genus. We also give a quantum version of our algorithm, whose query complexity is of . Our deterministic and quantum algorithms have query complexities respectively smaller than the algorithm Randomized Steepest Descent of Aldous and Quantum Steepest Descent of Aaronson for large classes of graphs, including graphs of bounded genus and planar graphs.  相似文献   

5.
6.
Note on the connectivity of line graphs   总被引:1,自引:0,他引:1  
Let G be a connected graph with vertex set V(G), edge set E(G), vertex-connectivity κ(G) and edge-connectivity λ(G).A subset S of E(G) is called a restricted edge-cut if GS is disconnected and each component contains at least two vertices. The restricted edge-connectivity λ2(G) is the minimum cardinality over all restricted edge-cuts. Clearly λ2(G)?λ(G)?κ(G).In 1969, Chartrand and Stewart have shown that
  相似文献   

7.
Suppose the vertices of a graph G were labeled arbitrarily by positive integers, and let S(v) denote the sum of labels over all neighbors of vertex v. A labeling is lucky if the function S is a proper coloring of G, that is, if we have S(u)≠S(v) whenever u and v are adjacent. The least integer k for which a graph G has a lucky labeling from the set {1,2,…,k} is the lucky number of G, denoted by η(G).Using algebraic methods we prove that η(G)?k+1 for every bipartite graph G whose edges can be oriented so that the maximum out-degree of a vertex is at most k. In particular, we get that η(T)?2 for every tree T, and η(G)?3 for every bipartite planar graph G. By another technique we get a bound for the lucky number in terms of the acyclic chromatic number. This gives in particular that for every planar graph G. Nevertheless we offer a provocative conjecture that η(G)?χ(G) for every graph G.  相似文献   

8.
9.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

10.
Let γ(G) denote the domination number of a digraph G and let CmCn denote the Cartesian product of Cm and Cn, the directed cycles of length m,n?2. In this paper, we determine the exact values: γ(C2Cn)=n; γ(C3Cn)=n if , otherwise, γ(C3Cn)=n+1; if , otherwise, .  相似文献   

11.
12.
13.
An important optimization problem in the design of cellular networks is to assign sets of frequencies to transmitters to avoid unacceptable interference. A cellular network is generally modeled as a subgraph of the infinite triangular lattice. The distributed frequency assignment problem can be abstracted as a multicoloring problem on a weighted hexagonal graph, where the weight vector represents the number of calls to be assigned at vertices. In this paper we present a 2-local distributed algorithm for multicoloring triangle-free hexagonal graphs using only the local clique numbers ω1(v) and ω2(v) at each vertex v of the given hexagonal graph, which can be computed from local information available at the vertex. We prove that the algorithm uses no more than colors for any triangle-free hexagonal graph G, without explicitly computing the global clique number ω(G). Hence the competitive ratio of the algorithm is 5/4.  相似文献   

14.
A homogeneous set is a non-trivial module of a graph, i.e., a non-empty, non-unitary, proper vertex subset such that all its elements present the same outer neighborhood. Given two graphs G1(V,E1) and G2(V,E2), the Homogeneous Set Sandwich Problem (HSSP) asks whether there exists a graph GS(V,ES), E1ESE2, which has a homogeneous set. This paper presents an algorithm that uses the concept of bias graph [S. Tang, F. Yeh, Y. Wang, An efficient algorithm for solving the homogeneous set sandwich problem, Inform. Process. Lett. 77 (2001) 17-22] to solve the problem in time, thus outperforming the other known HSSP deterministic algorithms for inputs where .  相似文献   

15.
16.
An adjacent vertex-distinguishing edge coloring of a simple graph G is a proper edge coloring of G such that incident edge sets of any two adjacent vertices are assigned different sets of colors. A total coloring of a graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G=(V,E) is a proper total coloring of G such that H(u)≠H(v) for any two adjacent vertices u and v, where H(u)={h(wu)|wuE(G)}∪{h(u)} and H(v)={h(xv)|xvE(G)}∪{h(v)}. The minimum number of colors required for an adjacent vertex-distinguishing edge coloring (resp. an adjacent vertex-distinguishing total coloring) of G is called the adjacent vertex-distinguishing edge chromatic number (resp. adjacent vertex-distinguishing total chromatic number) of G and denoted by (resp. χat(G)). In this paper, we consider the adjacent vertex-distinguishing edge chromatic number and adjacent vertex-distinguishing total chromatic number of the hypercube Qn, prove that for n?3 and χat(Qn)=Δ(Qn)+2 for n?2.  相似文献   

17.
18.
Given a vertex-weighted graph G=(V,E;w), w(v)?0 for any vV, we consider a weighted version of the coloring problem which consists in finding a partition S=(S1,…,Sk) of the vertex set of G into stable sets and minimizing where the weight of S is defined as . In this paper, we continue the investigation of the complexity and the approximability of this problem by answering some of the questions raised by Guan and Zhu [D.J. Guan, X. Zhu, A coloring problem for weighted graphs, Inform. Process. Lett. 61 (2) (1997) 77-81].  相似文献   

19.
20.
An edge covering coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least one time. The maximum integer k such that G has an edge covering coloring with k colors is called the edge covering chromatic index of G and denoted by . It is known that for any graph G with minimum degree δ(G), it holds that . Based on the subgraph of G induced by the vertices of minimum degree, we find a new sufficient condition for a graph G to satisfy . This result substantially extends a result of Wang et al. in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号