首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanowire-based transparent,flexible, and conductive thin film   总被引:1,自引:0,他引:1  
The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl) vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles.  相似文献   

2.
A series of white fluorinated polyimide/TiO2 composite films were prepared by a solution mixing method. They showed high tensile strength beyond 95.1MPa and excellent insulting property with surface and volume resistances exceeding 1.9 × 1011Ω and 2.3 × 1012 Ω cm, respectively, coupled with water absorptions below 1.1%, water contact angles up to 95.9 and whiteness beyond 58.5. It was found that their optical transparency decreased dramatically with the increasing doping of TiO2. The thermal degradation of pure fluorinated polyimide (FPI) and representative polyimide/TiO2 composite film with 5 wt% of TiO2 (PI/TiO2-5 wt%) was also studied.  相似文献   

3.
Effects of atomic oxygen (AO) and ultraviolet (UV) on a polymer film with surface energy of 8.0 mJ m−2 derived from poly(1H,1H‐perfluorooctyl methylacrylate) were investigated by contact angle measurements, X‐ray photoelectron spectroscopy, and atomic force microscope. The film was exposed to AO with a flux of 6.73 × 1015 atoms cm−2 s−1 and UV with intensity of 15.8 mW cm−2 at wavelength of 200–450 nm, respectively. It is found that AO and UV irradiation resulted in the reduction of film thickness, change of wettability, and increase of surface energy, and AO exhibited more serious effects than UV on the fluorinated polymer film. Reduced rate of thickness of the film was almost proportional to the AO exposure time. After exposed to AO and UV irradiation, the surface energy of the film increased to 17.3 mJ m−2 and 11.0 mJ m−2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
A polydisilahydrocarbon, namely, poly(tetramethyldisilylene‐co‐styrene), synthesized from dimethyldichlorosilane and styrene in 1 : 0.5 mol ratio under dechlorination conditions was evaluated as an atomic oxygen (AO) resistant coating for polyimide film and C‐polyimide composite. Exposure of the polymer coating on a quartz plate to an AO fluence of 2.1 × 1021 atoms/cm2 resulted in practically no mass loss, indicating the AO resistance of the polymer. Ten percent solution of the polymer in toluene was applied on aluminized Kapton® polyimide film (125 μm thick) to obtain a coating thickness of ~ 5 μm on the unaluminized surface. In a similar way, the coating was applied on a C‐polyimide composite. The coated and uncoated samples of Kapton® film and C‐polyimide composite were exposed to AO in a plasma barrel system. The uncoated aluminized Kapton® film (125 μm) lost 6.35 mg/cm2 when exposed to AO fluence of 1.6 × 1021 atoms/cm2 whereas the corresponding coated film lost only 0.14 mg/cm2 even after exposure to AO fluence of 2.1 × 1021 atoms/cm2. In the case of the C‐polyimide composite, the uncoated sample lost 63.64 mg/cm2 on exposure to AO fluence of 1.8 × 1021 atoms/cm2 whereas the coated one lost only 0.21 mg/cm2 even after exposure to AO fluence of 2.1 × 1021 atoms/cm2. SEM studies suggest that the coating offers good protection to the substrates. Formation of cracks on some portions of the coating was noticed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2368–2375, 2004  相似文献   

5.
A series of novel asymmetric membranes from polymer composites of poly(amide-imide) with various content of sulfonated polyimide (1–6 wt%) was obtained through the nonsolvent-induced phase separation process. Selective transport properties of the obtained materials were investigated in terms of pervaporation separation of methanol/methyl-tert-butyl ether mixtures at different temperatures. The introduction of the sulfonated polyimide to the poly(amide-imide) matrix leads to a significant increase in membrane flux and an overall decrease in the process selectivity. Composite membranes having 1 wt% sulfonated polyimide in the matrix showed increased values of membrane flux (0.960 kg m−2 h−1 in comparison with 0.682 kg m−2 h−1 for unmodified membranes at 40°C, 10 wt% methanol), while having similar selectivity values (79.2 wt% methanol in permeate in comparison with 82 wt% for unmodified membranes at 40°C, 10 wt% methanol). Modified membrane showed the highest separation factor of 147 while separating methanol from its 3 wt% mixture with methyl-tert butyl ether at 52°C with the overall flux of 1.01 kg m−2 h−1. A semiempirical mathematical model was developed and applied to test the efficiency of obtained membranes in the hybrid process of methanol/methyl-tert-butyl ether mixtures separation.  相似文献   

6.
A new strategy is reported for the fabrication of silver nanowire (AgNW) film heaters using reduced small/or large-size graphene oxide (rSGO or rLGO) sheets as an over-coating protective layer. The results show that ultrathin rLGO microsheets provide the best combination of protective effect and electrical properties on AgNW networks and thus could enable the design of high-performance transparent film heaters. As a consequence, good optical transparency and electrical conductivity, good oxidation resistance and thermal stability, and good heating performances are achieved with as-made rLGO/AgNW film heaters. Specifically, the rLGO/AgNW hybrid film annealed at 700 °C shows a low sheet resistance of 27 Ω sq−1 and a good optical transparency of 80%. Furthermore, it exhibits good heating characteristics and defrosting performance at low voltages. The results presented here may pave the way for a new promising application of rLGO/AgNW hybrid film in transparent film heaters and other electrical devices.  相似文献   

7.
Organosoluble polyimide (PI)/ceramic composite films with different BN or (BN + AlN) contents were under investigation for their thermal conductive performances. The chosen polyimide constituted by 4,4′‐oxydiphthalic dianhydride/2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluor opropane could be dissolved and cast into thin films at room temperature. The commercially available BN and AlN fillers up to a volume ratio of 0.6 were added to the polyimide and their thermal conductive performances were measured. BN powders needed a surface precoating treatment to avoid sedimentation. The dense and flexible PI/BN composite films, after a drying treatment at 200°C, showed high thermal conductivity of 2.3 W/m·K−1 at a BN volume ratio of 0.6, as compared with 0.13 W/m·K−1 for pristine polyimide. However, in the case of PI/(BN + AlN) composite films, thermal conductive performance degraded because the films became highly porous at the higher AlN content. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
A novel approach to prepare a polyimide nanofoam was explored by using a polyimide precursor grafted with a labile poly(propylene glycol) (PPG) oligomer. The PPG‐grafted polyimide precursor, poly((amic acid)‐co‐(amic ester)), was synthesized via partial esterification of poly(amic acid) derived from pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA) with bromo‐terminated poly(propylene glycol) in the presence of K2CO3 in hexamethylphosphoramide and N‐methylpyrrolidone. The precursor polymer film was spin‐coated onto a glass substrate, then imidized at 200 °C under nitrogen, and subsequently the PPG graft was decomposed by heating the film at 300 °C for 9 h in air, resulting in the PMDA/ODA polyimide nanofoam. The precursor polymers, polyimides and foamed polyimides were characterized by a variety of techniques including 1H‐NMR spectroscopy, Fourier‐transform infrared (FT‐IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The homogeneously distributed nano‐sized pores of 20–40 nm were observed by transmission electron microscopy (TEM) of the foamed polyimide. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The miniaturization trend of electronic devices requires that components have a high heat dissipation in industrial applications and in daily life. In this context, a highly thermally conductive film was fabricated with silver nanowire (AgNW) and poly(vinylidene fluoride) (PVDF) with a bar‐coating method. The thermal transport performance and mechanism of the AgNW/PVDF composite film were investigated. The through‐plane and in‐plane thermal conductivity of the AgNW/PVDF composite film reached 0.31 and 1.61 W m?1 K?1, respectively; these values far exceeded those of the pristine PVDF film. The experiment illustrated that the thermally conductive pathways formed successfully in the PVDF substrate with the addition of AgNW, and the heat tended to transfer along the thermally conductive pathway rather than along the PVDF substrate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43554.  相似文献   

10.
Highly reflective and/or surface conductive flexible polyimide films can be prepared by the incorporation of positive valent silver compounds into solutions of poly(amic acid)s formed from a variety of dianhydrides and diamines. Thermal curing of selected silver(I)-containing poly(amic acid)s leads to cycloimidization of the polyimide precursor with concomitant silver(I) reduction and surface aggregation of the metal yielding a reflective and/or conductive silver surface similar to that of the native metal. However, not all silver(I) precursors are effective surface metallization agents and not all poly(amic acid)s metallize with equal facility. Ligand/anion and polyimide structural effects on film metallization efficacy and on physical properties on metallized films are reviewed.  相似文献   

11.
《Ceramics International》2023,49(8):12615-12624
Boron nitride nanosheet (BNNS) is widely used in electronic thermal management due to its excellent planar thermal conductivity and insulating properties. However, it is challenging to improve the out-of-plane thermal conductivity of BNNS-doped composites due to the anisotropy of the thermal conductivity of BNNS. Therefore, the BNNS in the matrix must be oriented to obtain composites with high out-of-plane thermal conductivity. In this study, BNNS powders with directional structures were synthesized directly using sodium chloride templates. The as-obtained BNNS powders have a unique hollow cube-like structure with an ultra-low density of 2.67 × 10−2 g/cm3 and nearly 8 times the volume of the same mass of two-dimensional (2D) BNNS, making it easy to form the out-of-plane thermal conductivity paths in the polymer matrix. In addition, the high out-of-plane thermal conductivity of 4.93 W m−1 K−1 at 23.3 wt% loadings was obtained by doping it into a polyimide (PI) matrix. This value is 9.7 times higher than that of 2D BNNS-doped PI at the same loadings, 17.6 times higher than pure PI, and 6.1 times higher than the thermally conductive PI film sold by DuPont. Therefore, the prepared composite film has great potential for application in electronic thermal management.  相似文献   

12.
Polyimides containing pyridine as well as triazole were synthesized. The incorporation of pyridine or triazole improves the adhesion between polyimides and sputter-deposited copper. 4,4′-oxydianiline (ODA) was separately mixed with 2,6-diaminopyridine (DAP) and 3,5-diaminol,2,4-triazole (DATA), to form co-diamines. A series of polyimides was obtained in two steps by reacting co-diamines and 3,3′,4,4′-pyromellitic dianhydride (PMDA). The structure of the polyimides was verified by Fourier Transform Infrared spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). Their thermal, mechanical and dielectric properties were investigated. The rigidity of both pyridine and triazole moieties influences the coefficient of thermal expansion, the tensile strength and the elastic modulus of the films. The adhesion strength of the sputter-deposited copper to polyimide films was proportional to the functional group content. At a molar ratio of DAP to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 990 J/m2. At a molar ratio of DATA to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 696 J/m2. The corresponding polyimide films exhibited a good balance in thermal, mechanical and dielectric properties, as did the PMDA-ODA film. The locus of failure (LOF) examination by X-ray photoelectron spectroscopy (XPS) indicated that the LOF of laminates with low to moderate adhesion was mostly at the interface near the polyimide; the LOF of laminates with high adhesion was mostly in the polyimide. The N1s core level spectra of the delaminated copper surface revealed a peak at 398.4 eV in copper/polyimide with DAP/ODA ratio of 1 : 6 and a peak at 398 eV in copper/polyimide with DATA/ODA ratio of 1 : 6, perhaps due to the formation of N-Cu charge-transfer complex. This complex substantially promoted the adhesion between sputter-deposited copper and polyimides.  相似文献   

13.
Two series of cardo polyimides were prepared from 1,4‐bis(4‐fluorophthalimide)cyclohexane with different trans/cis ratios and phenolphthalein/o‐cresolphthalein via aromatic nucleophilic substitution reaction. The inherent viscosities of the synthesized polymers were found to be 0.55–0.66 dL g?1 in N,N′‐dimethylacetamide. The cardo polyimides showed excellent solubility in organic solvents, high glass transition temperatures (Tg) of 275–312 °C and moderate thermal stability with 5% weight loss temperatures (Td5%) of 415–441 °C in nitrogen and 370–436 °C in air. The polyimide films exhibited high optical transparency with cut‐off wavelengths of 350–355 nm and moderate mechanical properties. The different properties of the polymers caused by trans and cis configurations of 1,4‐diaminocyclohexane were also investigated. It was found that with an increasing content of trans configuration of 1,4‐diaminocyclohexane in the polyimide backbone, Tg of the polyimides increased as well as Td5%, while the solubility gradually decreased. The polyimide films had good optical transparency regardless of trans/cis configuration. © 2018 Society of Chemical Industry  相似文献   

14.
Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs) nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N), respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%), the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%). The tensile strength (TS) and the Young’s modulus (YM) values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa). These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm 1 (6.67 × 10 18 S cm−1 for pure polyimide) the maximum achieved so far for MWCNT-polyimide composites.  相似文献   

15.
The surface of a polyimide [poly(biphenyl 3,3′,4,4′-dianhydride-p-phenylene diamine)] film was modified with an O2 glow plasma and subsequent treatment with polyethyleneimine (PEI) and poly(maleic anhydride-co-vinyl methyl ether) (PMAVM). The density of peroxide groups formed on the surface after O2 plasma exposure was determined with 1,1-diphenyl-2-picrylhydrazyl and was found to level off to 1.2 nmol/cm2 within the plasma exposure time of 20-60 s. The peroxide groups formed were utilized to immobilize PEI covalently onto the plasma-treated polymer film. After that, PMAVM was immobilized on the surface through the formation of amide bonds between the amino groups of PEI and the anhydride groups of PMAVM. The water contact angle on the modified films showed that the hydrophilic durability of the PMAVM-PEI-modified polyimide film was superior to that of the polyimide film treated by O2 plasma alone.  相似文献   

16.
In this study, four novel triarylamine-based polyimides with different substituted groups (tert-butyl and -H) containing pyrrole moieties were successfully prepared by polycondensation reaction. The electrochemical and electrochromic properties of the polyimides were measured by cyclic voltammetry and spectro-electrochemistry. The polyimides exhibited obvious electrochromic behavior with good thermal stability (the 10% weight-loss temperatures were recorded in the range of 345-386°C), film-forming ability and reversible stability after 1000 s. The color of the polyimide films changed from colorless to light blue or yellow to blue on increasing the applied potential. The highest coloration efficiency reached up to 190 cm2C−1. The polyimide films exhibited a stable response to the light (on or off) after 200 s. Especially, PyHBTPI displayed effective solubility, superior optical contrast (~30%) in the visible region, faster response time (1.19 s for coloring process), and obvious color change from yellow to blue with good stability, thus, confirming the potential use for high contrast displays. Overall, the study demonstrates the successful development of high-performance polyimides for electrochromic and optoelectronic behaviors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48808.  相似文献   

17.
A series of new polyimides were prepared from the reaction of 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) with various aromatic diamines. The properties of the a-BPDA polyimides were compared with those of polyimides prepared from the reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with the same aromatic diamines. Films of the a-BPDA polyimides had higher glass transition temperatures (Tgs) and less color than the corresponding s-BPDA polyimide films. Light transmission at 500 nm, solar absorptivity, and thermal emissivity were determined on certain films. Films of similar polyimides based upon a-BPDA and s-BPDA containing meta linkages and others containing para linkages were each cured at 250, 300, and 350 °C. The films were characterized primarily by Tg, color, optical transparency, tensile properties, dynamic mechanical thermal analysis, and coefficient of thermal expansion. The a-BPDA meta linked polyimide films had tensile strengths and moduli higher than films of the a-BPDA para linked polyimide. The same phenomenon was not observed for the s-BPDA meta and para linked polyimides. The chemistry, mechanical, and physical properties of the polymers and films are discussed.  相似文献   

18.
In order to search for multifunctional epoxy thermosets (EP) with low flammability, high transparency and satisfied mechanical performance, DOPO-based phosphonate ammonium salt (DOA) was synthesized from 10-hydroxy-9,10-dihydro-9-oza-10-phosphaphenanthrene-10-oxide (DOPO-OH) and 2-amino-2-methyl-1,3-propanediol (AMPD). Under the influence of DOA, the flame-retardant and mechanical performances of the resulting EP were obviously improved. On account of the enhanced interaction and the incorporated flexible fragments in epoxy macromolecular chains, the tensile strength, elongation at break, and impact toughness of EP/5.0 wt% DOA significantly increased from 65.4 ± 1.2 MPa, 6.7 ± 0.6%, and 12.1 ± 1.3 kJ m−2 of EP to 81.4 ± 2.8 MPa, 10.6 ± 0.5%, and 18.0 ± 1.1 kJ m−2, respectively. In the presence of DOA, the limiting oxygen index (LOI) value of EP/5.0 wt% DOA increased to 35.5% and it passed the underwriter laboratories-94 vertical burning tests (UL-94 V) and got a V-1 rating. Moreover, the peak value of heat release rate (PHRR) was decreased by 38.0%. The analyses of char residues and volatile products showed that the activities of DOA on reducing the flammability of EP were ascribed to the protective effect of the char, the release of incombustible gases, and the radical-capture action of phosphorus-containing free radicals. Moreover, the modified epoxy thermosets still retained a high transparency.  相似文献   

19.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   

20.
Electrically conductive adhesives (ECAs) filled with sintered silver nanowires were prepared and the effect of different curing conditions on the electrical property of the ECAs was discussed. Silver nanowires with a diameter of 50–60 nm and a length of 2–3 μm were successfully synthesized through a polyol process and surface functionalized with dicarboxylic acid. Morphology studies showed that surface modified silver nanowires began to sinter at 200°C and became shorter and thicker, and eventually formed large chunks at higher temperatures. The conductive adhesives filled with 75 wt% of silver flakes and nanowires (3:2 weight ratio) were cured at different temperatures using two kinds of catalysts. The volume resistivity of the conductive adhesives cured at 300°C without a catalyst reached 5.8 × 10 –6 Ω cm. The dramatic improvement in the conductivity of the ECA is due to the sintering of silver nanowires and the high solid content resulting from the partial evaporation of polymer components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号