首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of carbon dioxide (CO2) separation technology is crucial for mitigating global climate change and promoting sustainable development. In this study, we successfully synthesized an array of cross-linked poly(vinyl alcohol) (PVA) membranes, xALD-PEG-ALD-c-PVA, with enhanced CO2/N2 separation performance by employing dialdehyde polyethylene glycol (ALD-PEG-ALD) as a cross-linker. The formation of the cross-linked network structure not only inhibits the crystallization of PVA but also disrupts hydrogen bonding and thus increases fractional free volume of PVA chains. Under the synergistic effect of these multiple factors, the cross-linked PVA membranes exhibit a significantly improved CO2 permeability. Moreover, they maintain high CO2/N2 selectivity, attributing to the CO2-philic characteristic of ethylene oxide groups in the cross-linked structure. At the ALD-PEG-ALD content of 1.6 mmol g−1, the xALD-PEG-ALD-c-PVA membrane demonstrates a CO2 permeability of 41.4 barrer and a CO2/N2 selectivity of 57.4 at 2 bar and 25°C. Furthermore, compared with the pristine PVA membrane, xALD-PEG-ALD-c-PVA membranes manifest superior mechanical properties and outstanding separation performance for a CO2/N2 (15/85, vol%) gas mixture. The excellent combination of permeability and selectivity makes xALD-PEG-ALD-c-PVA membranes highly promising for various CO2 separation applications.  相似文献   

2.
Studies were conducted on transport properties and separation performance of date pit/polysulfone composite membranes for CO2, CH4, N2, He, and H2 gases. Date seeds were obtained and processed into powder. Asymmetric flat sheet membrane was prepared by solvent casting method with 2–10 wt % date pit powder. Membrane characterization was done using high pressure gas permeation, X‐ray diffraction, thermogravimetric, and scanning electron microscope analyses. The separation performance and the plasticization resistance property were evaluated in terms of gas permeability, selectivity, and plasticization pressure, respectively. Time dependent performance properties were evaluated up to a pressure of 40 bar for 75 days. Results obtained showed the highest selectivity values of 1.54 (He/H2), 3.637 (He/N2), 2.538 (He/CO2), 2.779 (He/CH4), 3.179 (H2/N2), 3.907 (H2/CO2), 1.519 (CH4/N2), 1.650 (CO2/N2), and 1.261 (CO2/CH4) at 10 bar and 35 °C feed pressure and temperature, respectively. The resulting composite membrane showed about 39.50 and 66.94% increase in the selectivity of He/N2 and CO2/CH4, respectively, as compared to the pure polysulfone membrane. Thus, the membrane composites possess some potentials in membrane gas separation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43606.  相似文献   

3.
In this paper, the effect of testing temperature on the performance of fixed carrier membrane for CO2 separation were studied. The blend composite membranes were developed respectively with a blend of PEI-PVA (polyetheleneimine-polyvinyl alcohol) as separation layer and PS (polysulfone) ultrafiltration membranes as the substrates. The permselectivity of the membranes was measured with CO2/CH4 mixed gas. The effect of testing temperature on membrane separation performance was investigated. The results showed that both the permeances of CO2 and CH4 decreased with the increase of temperature, and the permeances decreased more quickly under low pressure than those under high pressure. At the feed pressure of 0.11 MPa, the CO2/ CH4 selectivity of PEI-PVA/PS blend composite membrane reduced along with temperature increment. Under the feed pressure of 0.21 MPa, as well as 1.11 MPa, the selectivity decreased with the increase of temperature.  相似文献   

4.
In this paper, the effect of testing temperature on the performance of fixed carrier membrane for CO2 separation were studied. The blend composite membranes were developed respectively with a blend of PEI-PVA (polyetheleneimine-polyvinyl alcohol) as separation layer and PS (polysulfone) ultrafiltration membranes as the substrates. The permselectivity of the membranes was measured with CO2/CH4 mixed gas. The effect of testing temperature on membrane separation performance was investigated. The results showed that both the permeances of CO2 and CH4 decreased with the increase of temperature, and the permeances decreased more quickly under low pressure than those under high pressure. At the feed pressure of 0.11 MPa, the CO2/ CH4 selectivity of PEI-PVA/PS blend composite membrane reduced along with temperature increment. Under the feed pressure of 0.21 MPa, as well as 1.11 MPa, the selectivity decreased with the increase of temperature.  相似文献   

5.
Low-density polyethylene film was subjected to direct fluorination on one surface by exposure to a dilute fluorine gas stream for various periods of time. Various analyses indicate partial fluorination of a thin surface layer. The permeability coefficients for He, CO2, and CH4 were measured at 35°C. The permeability of He was not changed by fluorination; whereas, values for CO2 and CH4 were decreased by as much as two orders of magnitude. The selectivity of transport for gas pairs of different molecular size was greatly improved, suggesting applications of this technique for membrane separation processes.  相似文献   

6.
Poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) membrane was prepared for the facilitated transport of CO2. The carrier of CO2 was monoprotonated ethylenediamine and was introduced in the membrane by ion exchange. The ion‐exchange capacity of the membrane was 4.5 meq/g, which was much higher than that of the Nafion 117 membrane. The membrane was highly swollen by the aqueous solution. Much higher selectivity of CO2 over N2 and higher CO2 permeability were obtained in the PAA/PVA membrane than in the Nafion membrane because of the higher ion‐exchange capacity and solvent content. The highest selectivity was more than 1900 when the CO2 partial pressure in the feed gas was 0.061 atm. Effects of ion‐exchange capacity, membrane thickness, and annealing temperature in conditions of membrane preparation on membrane performance were investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 936–942, 2001  相似文献   

7.
P84 polyimide membranes with thicknesses ranging from 6 to 310 μm were successfully fabricated by spin coating. The glass transition temperature of the P84 powder was found to be 315°C using differential scanning calorimetry, whereas its decomposition temperature was 536°C using thermogravimetric analysis. Scanning electron microscopy was used to examine the morphology of the membranes. The permeability of single gas (He, N2, O2, and CO2) and the ideal selectivity of gas pair (O2/N2, He/CO2, CO2/N2, and He/O2), as a function of membrane thickness, were determined. The results showed that the permeability of a single gas increased with increasing membrane thickness, whereas the selectivity of a given gas pair was nearly independent of the membrane thickness. The average selectivity of O2/N2, He/CO2, CO2/N2, and He/O2 were found to be 8.2, 10.0, 12.9, and 15.8, respectively. The effects of heat treatment on the membrane morphology and gas transport properties were investigated for three annealing temperatures, i.e., 80°C, 200°C, and 315°C. The membrane annealed at 315°C was cracked due to the stress sustained either during heating or cooling, thereby resulting in little or no selectivity. The permeabilities of P84‐118 membrane (118 μm thickness) annealed at 80°C were 16.2, 0.196, 1.20, and 2.01 Barrer for He, N2, O2, and CO2, respectively. The permeabilities of P84‐118 membrane annealed at 200°C decreased by 9.75%, 47.96%, 25.83%, and 30.85% for He, N2, O2, and CO2, respectively, as compared with those at 80°C, whereas the ideal selectivities increased by 42.65%, 30.52%, 32.85%, and 21.63% for O2/N2, He/CO2, CO2/N2, and He/O2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
This article focused on segregation of low concentration CO2 from CO2/N2 mixture gas by implementing high‐performance facilitated transport mixed matrix membranes (MMMs) in large‐scale carbon capture techniques. These advanced, novel CO2‐selective membrane materials were developed by embedding silica nanoparticles at different loading into the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) matrix using solution casting. In situ sol–gel technique was applied for the synthesis of the hydrophilic SiO2 nanoparticles. The compatibility of filler‐polymer matrix plays a crucial role in the optimization of the membrane performance. The dispersion and interaction of the filler into the polymer matrix were confirmed by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, contact angle tests, and swelling ratio analysis. Field emission scanning electron microscopy analysis of the synthesized MMMs established the homogeneous dispersion of the fillers in the polymer matrix. Owing to its good compatibility with PVA/PEG matrix, the inclusion of fillers significantly increased the overall separation efficiency of CO2 within the membrane. Compared to pristine PVA/PEG membrane, PVA/PEG/silica membrane with 3.34 wt % silica loading showed pronounced improvement in its gas separation properties with 78% augmentation in CO2 permeability and 45% enhancement in CO2/N2 selectivity for fixed conditions pertaining to sweep side water flow rate of 0.04 mL/min and 100 °C temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46481.  相似文献   

9.
The helium and carbon dioxide permeability through film samples of polyamidoimides (PAI) of two series at room temperature and a partial pressure drop of 0.1 MPa across the membrane has been studied. A correlation between the chemical structure of the studied PAI and their permeability has been ascertained: the helium permeability through PAI samples grows with increasing content of the diamine fragment, which reduces the chain stiffness; the selectivity of the studied PAI-based membrane samples for the He/CO2 gas pair declines as the carbon dioxide permeability increases and the diamine fragment of PAI becomes more complex.  相似文献   

10.
Carbon molecular sieve membranes (CMSM) were prepared from the pyrolysis of polyimide films within a temperature range of 600°C-800°C under nitrogen stream. The membrane samples were characterized and tested for the permeation of He, CH4, CO2, and N2 at different pressures and temperatures, respectively. The CMSM700 membrane (pyrolyzed at 700°C) showed an ideal selectivity of ~ 11 for N2/CH4 with a permeability of 2.18 × 10−15 mol · m/m2 · s · Pa for N2. The separation mechanism for the N2/CH4 pair was shown to be largely molecular sieving rather than surface flow. The membrane showed an ideal selectivity of ~ 500 for the CO2/CH4 pair with a CO2 permeability of 9.72 × 10−14 mol · m/m2 · s · Pa. The permeability of He was lower than that of CO2, suggesting that the surface flow played a significant role in the CO2 permeation. The updated permeability-selectivity tradeoff curves show that this CMSM membrane compared favourably with other membrane materials reported in the literature for the removal of N2 and CO2 from CH4 for natural gas upgrading.  相似文献   

11.
A vinyl amine–vinyl alcohol copolymer (VAm–VOH) was synthesized through free‐radical polymerization, basic hydrolysis in methanol, acidic hydrolysis in water, and an anion‐exchange process. In the copolymer, the primary amino groups on the VAm segment acted as the carrier for CO2‐facilitated transport, and the vinyl alcohol segment was used to reduce the crystallinity and increase the gas permeance. VAm–VOH/polysulfone (PS) composite membranes for CO2 separation were prepared with the VAm–VOH copolymer as a selective layer and PS ultrafiltration membrane as a support. The membrane gas permselectivity was investigated with CO2, N2, and CH4 pure gases and their binary mixtures. The results show that the CO2 transport obeyed the facilitated transport mechanism, whereas N2 and CH4 followed the solution–diffusion mechanism. The increase in the VAm fraction in the copolymer resulted in a carrier content increase, a crystallinity increase, and intermolecular hydrogen‐bond formation. Because of these factors, the CO2 permeance and CO2/N2 selectivity had maxima with the VAm fraction. At an optimum applied pressure of 0.14 MPa and at an optimum VAm fraction of 54.8%, the highest CO2 permeance of 189.4 GPU [1 GPU = 1 × 10?6 cm3(STP) cm?2 s?1 cmHg?1] and a CO2/N2 selectivity of 58.9 were obtained for the CO2/N2 mixture. The heat treatment was used to improve the CO2/N2 selectivity. At an applied pressure of 0.8–0.92 MPa, the membrane heat‐treated under 100°C possessed a CO2 permeance of 82 GPU and a CO2/N2 selectivity of 60.4, whereas the non‐heat‐treated membrane exhibited a CO2 permeance of 111 GPU and a CO2/N2 selectivity of 45. After heat treatment, the CO2/N2 selectivity increased obviously, whereas the CO2 permeance decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40043.  相似文献   

12.
Computer models were developed to compare the performances of facilitated transport (FT) and conventional solution-diffusion (SD) membrane modules, and sample calculations given for the separation of CO2/CH4 mixtures. Previous studies have indicated that high CO2 fluxes can be obtained with laboratory-sized sheets of FT membranes; but these studies have not examined the performance of these membranes as modules. In the present study, the FT membrane properties are those of an ion exchange membrane with ethylene diamine as the CO2 carrier, and the SD membrane properties are those of a typical, commercial cellulosic membrane. For the conditions examined, the facilitation effect in the FT membrane module is significant only when the partial pressure of CO2 is relatively low (< 10 psia). For a low CO2 partial pressure (7.5 psia) in the feed, the FT membrane with an ethylene diamine concentration of 8 M has a factor of 2 lower area requirement and 2% greater methane recovery than for an SD membrane with a selectivity of 30. Above 50 psia CO2 partial pressure, the SD and FT membrane modules function identically. We have also shown that the fraction of the total CO2 flux contributed by the ethylene diamine carrier increases along the flow path of the membrane module, thereby making the choice of an optimum equilibrium constant for the CO2/diamine reaction more difficult than in a membrane sheet with constant boundary conditions. However, even for the low CO2 feed partial pressure the required membrane area increases by less than 35% when the actual equilibrium constant is a factor of 10 greater than the optimum value.  相似文献   

13.
ABSTRACT

High moisture uptake and excellent mechanical properties of cellulose nano-fibril (CNF) make it an interesting material to use as an additive in facilitated transport membranes. The objective of this work is to develop novel phosphorylated nanocellulose fibrils (PCNF)/polyvinyl alcohol (PVA) nanocomposite membranes for biogas upgrading. Results showed that the thickness of membrane increases with increasing concentration of PCNF. The addition of PCNF to pristine PVA membranes has beneficial effect for CO2/CH4 separation. However, maximum performance was achieved with 1 wt.% PCNF in 2% PVA at pH 12. Furthermore, increasing feed pressure caused a decrease in both permeability and selectivity.  相似文献   

14.
Ultra‐thin MFI membranes were evaluated for N2/He separation over the temperature range of 85–260 K for the first time. The membranes were rather nitrogen selective at all the conditions investigated. A highest N2/He selectivity of 75.7 with a high N2 flux of 83 kg/m2/h was observed at 124 K. The separation was attributed to adsorption selectivity to N2, effectively hindering the transport of He in the zeolite pores. The exceedingly high permeance even at low temperatures was ascribed to the ultrathin (<1μm) membrane used. As the pressure ratios increased, a better separation performance was obtained. A mathematical model showed the largest difference of adsorbed loading over the film at ca. 120 K was the main reason for the observed maximum selectivity. Further, the modelling indicated the selectivity would increase 2–3 times by reducing the influence of defects, concentration polarization, and pressure drop over the support. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2833–2842, 2016  相似文献   

15.
The separation of CO2/CH4 is reported in detail by using zeolitic imidazolate framework (ZIF-8) membrane which was prepared on 3-aminopropyltriethoxysilane modified Al2O3 tube through microwave heating synthesis. Attributed to the preferential adsorption affinity of CO2 over CH4 and a narrow pore window of 0.34 nm, the ZIF-8 membrane shows high separation performances for the separation of CO2/CH4 mixtures. For the separation of equimolar CO2/CH4 mixture at 100°C and 2 bar feed (1 bar permeate) pressure, a CO2 permeance of 1.02 × 10?8 mol/m2· s· Pa and a CO2/CH4 selectivity of 6.8 are obtained, which is promising for CO2 separation.  相似文献   

16.
In this work, ether oxide (EO)-based multilayer composite membranes were prepared via interfacial polymerization (IP) of trimesoyl chloride (TMC) and polyetheramine (PEA) on polydimethylsiloxane precoated polysulfone support membrane. The effects of preparation parameters, such as monomer concentrations, reaction time, and heat-treatment temperature on the membrane performance were investigated. The optimal preparation parameters have been concluded. The results showed the increasing monomers concentration of both PEA and TMC can lead to the decrease of CO2 permeance and increase of CO2/N2 selectivity. The optimal monomers concentration was found. When monomer concentrations are higher than the optimal values, the CO2 permeance decreases continually while CO2/N2 selectivity only shows a very limited improvement with the further increase of monomers concentration. The reaction time has similar effects on membrane performance as the monomers concentration. The effect of heat-treatment temperature was also studied. With the increasing heat-treatment temperature, the CO2 permeance shows a decrease tendency, while the CO2/N2 selectivity shows a maximum at 80 °C. When PEA is 0.013 mol L−1, TMC is 0.020 mol L−1, reaction time is 3 min, and heat-treatment temperature is 80 °C, the optimum preparation conditions are achieved with CO2 permeance of 378.3 gas permeation unit (GPU) and CO2/N2 selectivity of 51.7 at 0.03 MPa. This work may help to design and fabricate gas separation membranes with desired performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47755.  相似文献   

17.
Integrally skinned asymmetric gas separation membranes of polyethersulfone (PES)/polyurethane (PU) blend were prepared using supercritical CO2 (SC-CO2) as a nonsolvent for the polymer solution. The membrane consisted of a dense and a porous layer, which were conjoined to separate CO2 from CH4. The FTIR, DSC, tensile and SEM tests were performed to study and characterize the membranes. The results revealed that an increase in SC-CO2 temperature causes an increment in permeance and a decrease in membrane selectivity. Furthermore, by raising the pressure, both permeance and selectivity increased. The modified membrane with SC-CO2 had much higher selectivity, about 5.5 times superior to the non-modified membrane. This higher selectivity performance compared to previous works was obtained by taking the advantages of both using partial miscible blend polymer due to the strong polar–polar interaction between PU PES and SC-CO2 to fabricate the membrane. The response surface methodology (RSM) was applied to find the relationships between several explanatory variables and CO2 and CH4 permeance and CO2/CH4 selectivity as responses. Finally, the results were validated with the experimental data, which the model results were in good agreement with the available experimental data.  相似文献   

18.
A new membrane material having two kinds of CO2 carriers was obtained. Composite membranes were prepared with the material and support membranes. The facilitated transport of CO2 through these membranes was performed with pure CH4 and CO2 as well as CH4/CO2 mixtures containing 50 vol % CO2. The results show that the membranes possess better CO2 permeance than that of other fixed carrier membranes reported in the literature. In the measurements with pure gases, at 26°C, 0.013 atm of CO2 pressure, the membrane with polysulfone support displays a CO2 permeance of 7.93 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 ideal selectivity of 212.1. In the measurements with mixed gases, at 26°C, 0.016 atm of CO2 partial pressure, the membrane displays a CO2 permeance of 1.69 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 selectivity of 48.1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2222–2226, 2002  相似文献   

19.
The pervaporation separation of methanol–water (M/W) mixtures was carried out using crosslinked poly(vinyl alcohol) (PVA) membranes with the low molecular weight of poly(acrylic acid) (PAA) as the crossinking agent. The PVA/PAA ratio in the crosslinked membrane was 90/10, 85/15, and 80/20 by weight. The operating temperatures were 50, 60, and 70°C, and the compositions of methanol–water mixtures to be separated were 70/30, 80/20, 90/10, and 95/5 (M/W) solutions. In all cases, the PVA/PAA = 80/20 membrane showed the best results. For M/W = 90/10 solution, the separation factor, αw/m = 465, and the permeation rate, 0.109 kg/m2h, at 70°C were obtained using the PVA/PAA = 80/20 menbrane. The permeation rate and the separation factor for M/W = 95/5 solution showed 0.033 kg/m2h and αw/m = 2650, respectively, when PVA/PAA = 80/20 membrane was used. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Mixed matrix membranes (MMMs) for CO2-facilitated separation were prepared by incorporating different surface-modified multiwalled carbon nanotubes (MWCNTs) in a fixed carrier membrane material. Polymer containing amino groups, poly(vinylalcohol-co-vinylamine) (VA-co-VAm) was synthesized as polymeric matrix. MWCNTs as well as MWCNTs surface-modified with  OH and  NH2 were applied as nanofillers. The physical property, chemical structure, and membrane morphology were characterized by FT-IR, TG, XRD, DSC, CA, XPS, and SEM. The effects of content, functional group, temperature, and pressure on gas permselectivity were studied. Results show that the incorporation of nanofillers can effectively restrict the polymer chain packing and lead to low crystallinity. The MMMs exhibited higher CO2 permselectivity than the pure polymeric membrane. For all the MMMs, the CO2 permeance and selectivity increased with MWCNTs contents to a maximum and then decreased. MWCNT-NH2 can be regarded as the most effective nanofiller. MMMs with 2.0 wt % MWCNT-NH2 displayed the highest CO2 permeance of 132 GPU and CO2/N2 selectivity of 74. Both CO2 permeance and selectivity were decreased with feed gas pressure and temperature. The membrane exhibited good stability in the testing with the binary gas mixtures of CO2/N2 for 110 h under 0.54 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47848.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号