首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sorption properties of the commercially available cationic exchange resin, Amberlite IRC‐718, that has the iminodiacetic acid functionality, toward the divalent metal‐ions, Fe2+, Cu2+, Zn2+, and Ni2+ were investigated by a batch equilibration technique at 25°C as a function of contact time, metal ion concentration, mass of resin used, and pH. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Fe2+ and that the metal‐ion uptake follows the order: Fe2+ > Cu2+> Zn2+ >Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Chromatographic column separations of toxic metal ions from industrial wastewater were achieved in acid media at optimized (Kd) values with a synthesized cation exchange TABA resin. The prepared TABA resin was characterized by FTIR, elemental, and thermogravimetric analysis. Studies of total ion exchange capacity, resin durability, and swelling were carried out. The distribution coefficient values of metal ions, viz Cu2+, Fe2+, Zn2+, Cd2+ and Pb2+ at different pH, were also studied using a batch equilibration method. The different factors affecting metal ions adsorption on this substrate, such as treatment time, agitation speed, and temperature, were studied in detail.  相似文献   

4.
An ion‐exchange resin containing carboxylic acid groups was prepared by reaction of epoxidized soybean oil with triethylene tetramine, followed by hydrolysis of glycerides by using sodium hydroxide solution. The cation exchange capacity of the resins was determined to be 3.50 mequiv/g. The adsorption capacity for Cu2+, Ni2+, and Co2+ on the obtained resin at pH 5.0 was found to be 192, 96, and 78 mg/g, respectively. Effect of pH on the adsorption capacity for copper (II), nickel (II), and cobalt (II) ions were also studied. Cu2+, Ni2+, and Co2+ were adsorbed at a pH above 3. These metal ions adsorbed on the resin are easily eluted by using 1N HCl solution. The selectivity of the resin for Cu2+ from mixtures containing Cu2+/Co2+/Ni2+ ions in the presence of sodium chloride was also investigated © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2386–2396, 2002  相似文献   

5.
A novel terpolymer acts as an effective chelating ion exchanger which was synthesized using 2-amino-6-nitro-benzothiazole and semicarbazide with formaldehyde (BSF) by solution condensation technique. Its ion exchange properties was determined against certain metal ions viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Pb2+ using batch equilibrium technique with different electrolyte concentrations, pH ranges and time intervals. The results of batch studies revealed that the separation of the selected metal ions from the aqueous solution by the terpolymer is found to be excellent compared to the available commercial resins and earlier reported resins. The order of metal ion uptake at higher concentrations by the BSF terpolymer at lower pH is Cu2+ > Ni2+ > Fe3+ and at lower concentration at higher pH is Zn2+ > Co2+ > Pb2+. The reusability of the resin was also reported for its effective ion-exchange behaviour for several cycles. The adsorption isotherm model was evaluated and the results are in good agreement with each other. The order of kinetics was also determined and the resin follows pseudo-second-order kinetics. Moreover, the physico-chemical analysis gives strong evidence for the effective metal ion removal compared with the earlier reported and commercial resins. Earlier, the structure and the properties of the synthesized novel chelating resin were clearly elucidated by elemental, FTIR, UV–Vis, 1H & 13C NMR spectra, GPC, SEM and XRD.  相似文献   

6.
Melamine–formaldehyde–thiourea (MFT) chelating resin has been prepared. Au3+ ions uptake behavior and selectivity of the chelating resin were investigated by both batch and column methods. MFT resin showed higher affinity toward Au3+ compared with base metal ions, Cu2+ and Zn2+. The highest Au3+ uptake values were obtained at pH 2 and Au3+ adsorption capacity of the resin was calculated as 48 mg Au3+/g resin (0.246 mmol Au3+/g resin) by batch method. It was concluded that Au3+ ions could be selectively concentrated from the solution including Cu2+ and Zn2+ base metal ions by column method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Hydroxybenzoic acid group has been incorporated onto guar gum by modified Porath's method of functionalization of polysaccharides. The newly synthesized guar gum 4‐hydroxybenzoic acid (GHBA) resin was characterized by Fourier‐transform infrared spectroscopy, elemental analysis, ion‐exchange capacity, column reusability, and physicochemical properties. The distribution coefficient (Kd) values and effect of pH on chelation of these metal ions using batch method were studied. The separations of mixture of Fe2+, Zn2+, Cu2+, Cd2+, and Pb2+ metal ions on GHBA resin on the basis of their distribution coefficient at various pH were also achieved using column chromatography. The effect of experimental parameters such as pH, treatment time, agitation speed, temperature, adsorbent dose, initial metal ion concentration, and flow rate on the removal of metal ions has been also studied. GHBA resin is effective adsorbents for the removal of different toxic metal ions from aqueous solutions and follows the order: Fe2+ > Zn2+ > Cu2+ > Cd2+ > Pb2+. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

9.
3-Carboxy-4-hydroxyacetophenone (CHAP) was polycondensed with various proportions of formaldehyde using alcoholic alkali as catalyst. The resin samples, designated as CHAP-F, have been characterized by elemental analyses and IR spectroscopy, by estimation of their number average molecular weights (M?n), by measurement of intrinsic viscosity, and by TGA. Polymeric metal chelates of one CHAP-F sample with Cu2+, Fe3+, Co2+, Ni2+, and UO22+ ions have been prepared and characterized. Ion-exchanging properties of one CHAP-F resin sample for Fe3+, Cu2+, and Ni2+ metal ions are studied by the application of the batch-equilibration method.  相似文献   

10.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

12.
The aim of this research was to prepare magnesium ferrite (MgFe2O4) magnetic nanoparticles and to investigate their sorption characteristics towards Mn2+, Co2+, Ni2+, Cu2+ ions in aqueous solution. MgFe2O4 was synthesized by glycine-nitrate combustion method and was characterized by low crystallinity with crystallite size of 8.2?nm, particle aggregates of 13–25?nm, BET surface area of 14?m2/g and pore size of 8.0?nm. Sorption properties of MgFe2O4 towards Mn2+, Co2+, Ni2+, Cu2+ ions were studied using one-component model solutions and found to be dependent on metal ions concentration, contact time, pH and conditions of regeneration experiment. The highest sorption capacity of MgFe2O4 was detected towards Co2+ (2.30?mmol?g1) and Mn2+ (1.56?mmol?g?1) and the lowest towards Ni2+ (0.89?mmol?g?1) and Cu2+ (0.46?mmol?g?1). It was observed that sorption equilibrium occurs very quickly within 20–60?min. The pHzpc of sorbent was calculated to be 6.58. At studied pH interval (3.0–7.0) the sorption capacity of MgFe2O4 was not significantly affected. Regeneration study showed that the metal loaded sorbent could be regenerated by aqueous solution of 10?3 M MgCl2 at pH 6.0 within 120?min of contact time. Regeneration test suggested that MgFe2O4 magnetic sorbent can be efficiently used at least for four adsorption-desorption cycles. The high sorption properties and kinetics of toxic metal ion sorption indicates good prospects of developed sorbent in practice for wastewater treatment.  相似文献   

13.
Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu2+, Pb2+, and Cd2+ from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N2 adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu2+, Pb2+, than for Cd2+ due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g?1 for Cu2+, 1.34 mmol g?1 for Pb2+, and 1.08 mmol g?1 for Cd2+ at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L?1, and adsorbent dose=1 g L?1). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol?1 K?1 also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu2+, Pb2+, and Cd2+ even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions.  相似文献   

14.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
《分离科学与技术》2012,47(16):2197-2201
Abstract

Copper has been selectively extracted from aqueous solutions containing metal ions (Cu2+, Co2+, Ni2+, Fe2+, Fe3+, Mg2+, and Zn2+) by a liquid membrane technique. Experiments were carried out in a beaker equipped with a baffle, and the system was stirred by a variable-speed mixer equipped with a turbine impeller; the mixing speed was 300 rpm. A typical membrane formulation was 2.0% Span 80, 4.0% LIX 860, and 94.0% of commercial kerosene, all values being by weight. Copper was selectively separated and concentrated from both synthetic and natural aqueous mine solutions containing various metal ions.  相似文献   

16.
《分离科学与技术》2012,47(13):1925-1939
Chelating terpolymer resin was synthesized and characterized by elemental, physico-chemical, spectral, SEM, XRD, and GPC to elucidate the structure and properties of the terpolymer. Ion-exchange analysis involving evaluation of metal ion uptake in different electrolyte concentrations, pH, and time have been studied to assess the retention capacities of the terpolymer for the metal ions viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Pb2+. The adsorption isotherm was evaluated using the Langmuir and Freundlich isotherms models and the results were found best fitting with each other. The resin can be successfully used in the field of recovery of metal ions from effluents and contaminated water.  相似文献   

17.
A series of differently crosslinked polyacrylamide chelating resins were prepared, using N,N′-methylene-bis-acrylamide as the crosslinking agent. The crosslinked resins were functionalized by the reaction with ethylene diamine to get amino group capacities varying from 4.2 to 1.1 mequiv/g. The maximum adsorption capacities of the lightly crosslinked resin for Fe3+, Fe2+, Ni2+, and Cu2+ are 3.62, 4.22, 1.48, and 1.67 mequiv/g, respectively. The adsorbed metal ions can be quantitatively desorbed. The adsorption rate and the influence of pH on the adsorption of metal ions were examined. The resins can be used for the separation between different metal ions as well as the ions in different valence states (e.g., Fe3+ and Fe2+). The resin is amenable for continuous process and can be regenerated several times.  相似文献   

18.
《分离科学与技术》2012,47(14):2963-2986
Abstract

For the functional enhancement of chelating resins containing carboxylic acids, copolymer beads were prepared by suspension polymerization of styrene (St), methyl methacrylate (MMA), and divinylbenzene (DVB) in the presence of toluene as diluent. The phenyl rings of the beads were directly chloromethylated, and the carboxylic ester groups of the beads were converted into hydroxymethyl groups by reduction followed by chlorination to give chloromethyl groups, respectively. The chelating resins containing a pair of neighboring carboxylic acid groups (NCAGs) were obtained by the alkylation of chloromethyl groups in copolymer beads with diethyl malonate in the presence of sodium hydride followed by hydrolysis using aqueous alkali solution. Accordingly, the structural effects of the resins on the adsorption of heavy metal ions were investigated. Poly(St‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, and Cu2+, whereas poly(MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Cu2+, Cd2+, and Co2+. On the other hand, poly(St‐co‐MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, Hg2+, Co2+, and Cu2+: a synergistic effect on the adsorption of heavy metal ions like Pb2+, Cd2+, Hg2+, and Co2+ was observed. The adsorption ability of poly(St‐co‐MMA‐co‐DVB)‐based chelating resin among three kinds of chelating resins was relatively good.  相似文献   

19.
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene‐alt‐maleic anhydride) with 2‐aminopyridine was synthesized. This modified resin was further reacted with 1,2‐diaminoethan or 1,3‐diaminopropane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale for the recovery of heavy metals from aqueous solutions. The adsorption behavior of Fe2+, Cu2+, Zn2+, and Pb2+ ions were investigated by the synthesis of chelating resins at various pH's. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at acidic pH. Also, the prepared resins were examined for the removal of metal ions from industrial wastewater and were shown to be very efficient at adsorption in the cases of Cu2+, Fe2+, and Pb2+. However; the adsorption of Zn2+ was lower than those of the others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis, and differential scanning calorimetry analysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A novel terpolymer involving 2‐amino‐6‐nitrobenzothiazole and ethylenediamine with formaldehyde was synthesized by a polycondensation technique using glacial acetic acid as a reaction medium. The resulting chelating terpolymer resin was characterized using elemental analysis, physicochemical parameters, and UV‐visible, Fourier transform infrared, 1H NMR and 13C NMR spectral studies. Average molecular weights of the terpolymer were determined using gel permeation chromatography. The surface morphology and the nature of the terpolymer were investigated using scanning electron microscopy and X‐ray diffraction. The chelation ion‐exchange property of the terpolymer was determined against some common metal ions such as Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Pb2+ using the batch equilibrium method. Effects of parameters such as the pH, contact time and various electrolyte concentrations were studied. The reusability of the terpolymer was checked in terms of its effective repeated usage. The results of the Langmuir and Freundlich adsorption isotherm models were best fitted with each other and the reaction kinetics followed pseudo second‐order kinetics. The terpolymer showed good results against Fe3+, Cu2+ and Ni2+ ions compared to those against the other metal ions. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号