首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
明胶膜固定化脲酶的制备及性质   总被引:7,自引:0,他引:7  
以明胶为载体,戊二醛为交联剂,采用包埋-交联联用法制备了明胶膜固定化脲酶,其酶活力为6 07U/g载体,酶活力收率为66 1%。最优固定化条件是包酶量为10mg酶/g明胶,ρ(明胶)=100g/L,φ(戊二醛)=0 5%。研究了固定化酶的性质,并与游离酶作了比较,游离酶的最适pH=7 0,固定化酶的最适pH=6 5;游离酶的最适温度为60℃,固定化酶的最适温度升至70℃;固定化酶与游离酶的米氏常数Km分别为11 7mM和12 4mM;固定化酶在80℃下180min仍保留初始活力的10%,而游离酶几乎完全失活。固定化酶重复使用20次其活力仅下降15%,4℃下贮存35d后仍保持初始活力的55%。  相似文献   

2.
海藻酸钠-明胶协同固定化S-腺苷甲硫氨酸合成酶的研究   总被引:1,自引:0,他引:1  
以海藻酸钠和明胶为载体,对S-腺苷甲硫氨酸合成酶进行固定化。再用戊二醛对其进一步交联,增强固定化酶的稳定性。考察了海藻酸钠和明胶质量分数、CaCl2质量分数、酶和载体比例以及交联剂戊二醛体积分数等因素对固定化酶的影响。结果表明,最佳固定化条件为:海藻酸钠质量分数2.0%、明胶质量分数1.0%、CaCl2质量分数4.0%、固定化酶量为2.5 g/L凝胶、戊二醛体积分数0.6%。交联固定化酶热稳定性得到大幅度提高,在50℃下保温5 h仍保留72%的活力,而游离酶则完全失活。交联固定化酶在碱性溶液中的稳定性较高,在pH=8.0~9.0的缓冲液中4℃保温10 h酶活性仍保留87%以上。将交联固定化酶用于S-腺苷甲硫氨酸的合成,连续反应8批次后酶活性仍保留65%。  相似文献   

3.
This study focuses on the preparation and application of a recombinant thermophilic inorganic pyrophosphatase from the archaeon Pyrococcus furiosus on amino‐functionalized silica beads. The amino‐functionalized silica beads were prepared by coating with 3‐aminopropyltriethoxysilane by silanization. The thermostable inorganic pyrophosphatase was rapidly and successfully immobilized onto the amino‐functionalized silica beads with glutaraldehyde as a coupling agent (within 12 min, >95.4% protein was immobilized onto the support). The results show that the protein could be immobilized efficiently, with up to 1 mg of protein/g of support with 92.9% activity. Compared with the free enzyme, the immobilized enzyme displayed a high activity toward inorganic pyrophosphate, less sensitivity toward the pH, and increased thermal stability. The immobilized enzyme retained 56.9% of its initial activity after hydrolysis of the inorganic pyrophosphate after 12 consecutive cycles (total = 330 min) at high temperature; this indicated a high protein stability suitable for practical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40700.  相似文献   

4.
Biocatalytic hydrogel beads, which retain higher activity, expand, and contract with changes in pH, having biocompatibility, are developed. Composite spherical beads of chitosan having a diameter of 1–2 mm were prepared by ionic gelation using sodium tripolyphosphate (TPP). Above 3% TPP, the activity of the enzyme decreases. The mechanical strength of the chitosan–TPP beads was further improved by the addition of clay or cassava starch granules. The immobilization of protease (fungal, Aspergillus) was done with glutaraldehyde crosslinking. The chitosan–starch hydrogel beads showed significant increase in firmness and stiffness when compared with chitosan–clay beads. The swelling studies show that the particles expand at pH 1.2 and contract at pH 7.4. The activity retention of the immobilized protease was as high as 70% and exhibited a high pH and lower temperature optima than the free enzyme. Chitosan–starch hydrogel beads exhibited degradation peaks at about 90–110°C in TGA analysis. The biocatalyst beads retained 85% of the original catalytic activity even after eight cycles of repeat use. The freeze‐dried beads has good storage stability and can be used either as artificial bioreactor systems in detergent or in therapeutic formulations © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Enzyme hydrolysis with immobilized neutral protease was carried out to produce low molecular weight chitosan (LMWC) and chito‐oligomers. Neutral protease was immobilized on (CS), carboxymethyl chitosan (CMCS), and N‐succinyl chitosan (NSCS) hydrogel beads. The properties of free and immobilized neutral proteases on chitosaneous hydrogel beads were investigated and compared. Immobilization enhanced enzyme stability against changes in pH and temperature. When the three different enzyme supports were compared, the neutral protease immobilized on CS hydrogel beads had the highest thermal stability and storage stability, and the enzyme immobilized on NSCS hydrogel beads had the highest activity compared to those immobilized on the other supports, despite its lower protein loading. Immobilized neutral protease on all the three supports had a higher Km (Michaelis‐Menten constant) than free enzyme. The Vmax (maximum reaction velocity) value of neutral protease immobilized on CS hydrogel beads was lower than the free enzyme, whereas the Vmax values of enzyme immobilized on CMCS and NSCS hydrogel beads were higher than that of the free enzyme. Immobilized neutral protease on CS, CMCS, and NSCS hydrogel beads retained 70.4, 78.2, and 82.5% of its initial activity after 10 batch hydrolytic cycles. The activation energy decreased for the immobilization of neutral protease on chitosaneous hydrogel beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3743–3750, 2006  相似文献   

6.
Immobilization of Lecitase (Phospholipase A1) in gelatin hydrogel and its stability is studied with a view to utilizing the immobilized enzyme for degumming rice bran oil. Excellent retention of enzyme activity (>80%) is observed in hydrogel containing 43.5% gelatin crosslinked with glutaraldehyde. Compared to the free enzyme which has a broad pH-activity profile (6.5–8.0), the activity of the immobilized enzyme is strongly dependent on pH and has a pH-optimum of pH 7.5. The optimum temperature of enzyme activity increases from 37 to 50 °C. Compared to the free enzyme which loses all its activity in 72 h at 50 °C, the immobilized enzyme retains its activity in full. The immobilized enzyme has been used efficiently in a spinning basket bioreactor for the degumming of rice bran oil with 6 recycles without loss of enzyme activity. The phosphorus content of the oil decreases from 400 ppm to 50–70 ppm in each cycle. After charcoal treatment and dewaxing, a second enzymatic treatment brings down the phosphorus content to <5 ppm.  相似文献   

7.
张双正  陈国  苏鹏飞 《化工学报》2017,68(7):2763-2770
提出了一种采用羧基磁性纳米粒子制备杂化磁响应交联酶聚集体(M-CLEAs)的方法。表面羧基修饰的约10 nm的磁性纳米粒子与酶分子表面的氨基位点通过静电相互作用,形成复合物,在磁场作用下可将磁性纳米粒子-酶复合物从溶液中分离,经戊二醛交联即形成M-CLEAs。传统的表面氨基修饰的磁性纳米粒子与酶需在沉淀剂作用下,从溶液中分离,而后采用戊二醛共交联,而本方法无须沉淀剂,过程更为简化。以糖化酶为对象,对该过程的影响因素(交联时间、pH、酶浓度、戊二醛浓度等条件)进行了探索,并对制得的M-CLEAs的酶学性质进行了较为详细考察。结果表明,最优制备条件为:酶浓度1 mg·ml-1,磁流体浓度10 mg·ml-1,戊二醛浓度0.25%(质量体积比),在pH 6.0下交联反应6 h,最终载酶量可达80 mg·g-1、比活为50 U·mg-1。制得的固定化酶pH稳定性、热稳定性和储存稳定性均显著改善,可实现糖化酶重复使用10次,仍保留接近60%的酶活。  相似文献   

8.
以B型明胶为原料,戊二醛为交联剂,通过改进的两步去溶剂法制备了较小粒径(约100nm)的明胶纳米颗粒(Gelatin nanoparticles, GNPs);研究了分散体系浓度、去溶剂化试剂、交联剂用量的影响。结果表明:降低明胶在二次分散体系中的浓度,制得的GNPs的尺寸更小且分布均匀。残留的去溶剂化试剂丙酮必须去除,因为它会使GNPs分散性变差。在明胶质量浓度为8 g/L的分散液中,仅用质量分数为4.5%的戊二醛(与明胶质量比)即可制得稳定的GNPs,其粒径为50~150 nm,PDI (polydispersity index)约为0.14,Zeta电位绝对值< 30 mV。AFM和 TEM测试结果表明GNPs呈光滑球形,为边缘部分比核心更为疏松的非均质结构。  相似文献   

9.
Yeast alcohol dehydrogenase (YADH), which catalyzes oxidoreductions of a broad spectrum of substrates, was immobilized by entrapping it into a network of a poly(acrylamide‐co‐hydroxyethyl methacrylate) copolymer and was also covalently bound onto porous chitosan beads activated through glutaraldehyde. Maximum retention of YADH activity achieved was 90 and 24% for entrapment and covalent binding, respectively. The results obtained for thermal, storage, and operational stability of entrapped and covalently bound YADH were compared with free YADH. The immobilized enzyme showed improved thermal and storage stability. The immobilized enzymes also retained 50% activity after six and eight cycles. Enzyme‐catalyzed oxidation of ethanol was observed to be diffusion‐controlled through Lineweaver–Burk plots. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1299–1305, 2001  相似文献   

10.
Chitosanase obtained fromPenicillium sp.ZD-Z1 was immobilized on DEAE cellulose with glutaraldehyde by cross-linking reaction. The optimal conditions of immobilization were as follows: 0.1 g DEAE cellulose was treated with 5 ml 5% glutaraldehyde solution; then 2.3 mg chitosanase was immobilized on the carrier. The optimal temperature and pH was 60 °C and 4.0, and the K m value was 18.87 g/L. Under optimal conditions, the activity of immobilized enzyme is 1.5 U/g, and the recovery of enzyme activity is 81.3%. After immobilization, the optimal temperature and K m value increased (from 50 °C to 60 °C, from 2.49 g/L to 18.87 g/L), whereas the optimal pH was reduced (from 5.0 to 4.0). The enzyme activity loss was less than 20% after 10 times batch reaction; the immobilized enzyme showed good operation stability.  相似文献   

11.
BACKGROUND: A totally new approach has been applied for mathematical modeling of the enzyme activity/pH relationship, for quantification and distribution of enzyme activity in and out of carrier pores. This is a very simple and elegant method for determination of the distribution of enzyme molecules on the surface and inside the particles, simply through measurement of enzyme activity at different pH values. RESULTS: Amyloglucosidase (AG) from Aspergillus niger was covalently immobilized onto poly(GMA‐co‐EGDMA) by the glutaraldehyde and periodate methods. Mathematical modeling of the pH optima for two types of covalently immobilized AG resulted in higher enzyme amounts on the surface within periodate immobilizate (67%) in comparison with glutaraldehyde immobilizate (53%). These values are modified to 64.25% for periodate immobilizate and 49.95% for glutaraldehyde immobilizate when diffusion effects are taken into account. CONCLUSION: The mathematical model applied enabled observation of the difference between the two types of coupling agents and different immobilization procedures throughout quantification of the immobilized enzyme on the matrix surface and inside pores. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
Naringinase (EC 3.2.1.40) from Penicillium sp was immobilized by covalent binding to woodchips to improve its catalytic activity. The immobilization of naringinase on glutaraldehyde‐coated woodchips (600 mg woodchips, 10 U naringinase, 45 °C, pH 4.0 and 12h) through 1% glutaraldehyde cross‐linking was optimized. The pH–activity curve of the immobilized enzyme shifted toward a lower pH compared with that of the soluble enzyme. The immobilization caused a marked increase in thermal stability of the enzyme. The immobilized naringinase was stable during storage at 4 °C. No loss of activity was observed when the immobilized enzyme was used for seven consecutive cycles of operations. The efficiency of immobilization was 120%, while soluble naringinase afforded 82% efficacy for the hydrolysis of standard naringin under optimal conditions. Its applicability for debittering kinnow mandarin juice afforded 76% debittering efficiency. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
本文以猪骨基多孔碳为载体,采用明胶包埋与戊二醛交联结合的方法,制备固定化过氧化氢酶,并对固定化酶制备条件的优化,酶作用最适条件及其稳定性进行研究。结果表明:以猪骨基多孔碳为载体吸附2h、1%明胶包埋、1%戊二醛交联过氧化氢酶制备的固定化酶,在最适的缓冲液浓度、溶液pH和体系温度下,虽然催化效率有所下降,但其贮存稳定性和操作稳定性都有所增加,重复使用8次后,活力仍保持在初始活力的90%以上。这对于过氧化氢酶进一步在食品工业和纺织工业的推广可能有潜在的应用价值。  相似文献   

14.
酸性脲酶的固定化研究   总被引:2,自引:0,他引:2  
以明胶为包埋材料,戊二醛为交联剂固定化粪产碱菌所产的酸性脲酶。对酸性脲酶的固定化条件(包括明胶含量、戊二醛浓度、吸附时间、交联时间和粗酶液用量)及酶学性质(温度和pH值)进行了研究。结果表明,固定化酶的最适宜条件为:明胶的质量分数15%,戊二醛质量分数0.3%,吸附时间4 h,交联时间20 min,粗酶液用量4 mL。...  相似文献   

15.
Silver nanoparticles (AgNPs)‐loaded calcium alginate beads embedded in gelatin scaffolds were developed to sustain and maintain the release of silver (Ag+) ions over an extended time period. The UV irradiation technique was used to reduce Ag+ ions in alginate solution to AgNPs. The average sizes of AgNPs ranged between ca 20 and ca 22 nm. The AgNPs‐loaded calcium alginate beads were prepared by electrospraying of a sodium alginate solution containing AgNPs into calcium chloride (CaCl2) solution. The AgNPs‐loaded calcium alginate beads were then embedded into gelatin scaffolds. The release characteristics of Ag+ ions from both the AgNPs‐loaded calcium alginate beads and the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were determined in either deionized water or phosphate buffer solution at 37 °C for 7 days. Moreover, the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were tested for their antibacterial activity and cytotoxicity. © 2014 Society of Chemical Industry  相似文献   

16.
Invertase was immobilized onto poly(p‐chloromethylstyrene) (PCMS) beads that were produced by a suspension polymerization with an average size of 186 μm. The beads had a nonporous but reasonably rough surface. Because of this, a reasonably large external surface area (i.e., 14.1 m2/g) could be achieved with the proposed carrier. A two‐step functionalization protocol was followed for the covalent attachment of invertase onto the bead surface. For this purpose, a polymeric ligand that carried amine groups, polyethylenimine (PEI), was covalently attached onto the bead surface by a direct chemical reaction. Next, the free amine groups of PEI were activated by glutaraldehyde. Invertase was covalently attached onto the bead surface via the direct chemical reaction between aldehyde and amine groups. The appropriate enzyme binding conditions and the batch‐reactor performance of the immobilized enzyme system were investigated. Under optimum immobilization conditions, 19 mg of invertase was immobilized onto each gram of beads with 80% retained activity after immobilization. The effects of pH and temperature on the immobilized invertase activity were determined and compared with the free enzyme. The kinetic parameters KM and VM were determined with the Michealis–Menten model. KM of immobilized invertase was 1.75 folds higher than that of the free invertase. The immobilization caused a significant improvement in the thermal stability of invertase, especially in the range of 55–65°C. No significant internal diffusion limitation was detected in the immobilized enzyme system, probably due to the surface morphology of the selected carrier. This result was confirmed by the determination of the activation energies of both free and immobilized invertases. The activity half‐life of the immobilized invertase was approximately 5 times longer than that of the free enzyme. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1268–1279, 2002  相似文献   

17.
研究了转谷氨酰胺酶在聚丙烯微孔膜上的化学固定化的影响因素,确定了最佳固定化工艺条件,即为:第一步光照反应6 min,单体质量分数为20%,第二步光照时间25 min,接枝率最高可达35.2%;己二胺质量分数为25%,胺烷基化时间150 min,胺烷基化温度60℃;戊二醛质量分数3%,戊二醛作用时间45 min;酶液浓度10 mg/mL,固定化时间20 h,固定化温度4℃,固定化酶膜的活力最高可达游离酶的45%.并研究了温度、pH、金属离子对固定化酶膜的酶学性质的影响,其贮存性能和操作稳定性也做了初步研究.  相似文献   

18.
Novel polymeric sodium alginate (Na‐Alg) interpenetrating network (IPN) beads have been prepared by crosslinking Na‐Alg blend with gelatin (GE) or egg albumin (EA) using glutaraldehyde (GA) as the crosslinking agent. These beads were used for the controlled release of chlorpyrifos. The swelling experiments were performed in water at different temperatures, and these data were used to calculate the molecular mass (MC) between crosslinks as well as diffusion coefficients. Diffusion coefficients calculated from desorption data were lower by about two orders of magnitude than those calculated from sorption results. Higher values of MC were obtained for the gelatin‐based IPNs than the neat Na‐Alg and egg albumin‐based matrices. Size of the beads did not vary significantly either by the network or by increasing the exposure time to the crosslinking agent. The scanning electron microscopy (SEM) was used to understand the surface characteristics of the beads. Differential scanning calorimetry (DSC) indicated a molecular level dispersion of chlorpyrifos in the polymer matrix. The percentage entrapment efficiency showed a dependence on the type of network polymer as well as time of exposure to the crosslinking agent. The encapsulation efficiency decreased with an increase in time of exposure to the crosslinking agent. In vitro release experiments have been performed to follow the release kinetics of chlorpyrifos from the matrices. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 911–918, 2002  相似文献   

19.
Electrospinning is an interesting technique, which provides a facile and an effective mean in producing nonwoven fibrous materials; however, for producing nanofibers, investigation of the electrospinning conditions is very important. In this study, chitosan, gelatin, and their polyelectrolyte complexes (PECs) were electrospun to prepare nonwoven nanofibrous mats. The concentrations of chitosan and gelatin solutions and electric field (kV/cm) were optimized. The solutions were then blended in different ratios (0–100%) to get electrospun nanofibrous mats. Solution concentration and electric field showed pronounced effect on the electrospinnability and fiber diameter of these systems. Mostly large beads coexisted with the fibers were observed for chitosan at 1 wt% solution concentration, which then showed good electrospinnability at 2 wt% (nanofiber diameter was 145 and 122 nm at 15 and 20 kV/10 cm, respectively), whereas gelatin showed no electrospinnability below 15 wt% solution concentration and a homogenous fibers network at 15 wt% (149 nm at 20 kV/10 cm). The morphology and diameter of chitosan–gelatin PEC nanofibers varied with the chitosan/gelatin ratio. The crystallinity of chitosan was also observed to reduce with electrospinning and addition of gelatin. POLYM. ENG. SCI. 50:1887–1893, 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
Abstract

Bioblends are composites of at least one biodegradable polymer with a non-biodegradable polymer. Successful development of bioblends requires that the biodegradable polymers be compatible with other component biodegradable/synthetic (non-biodegradable) polymers. Bioblends from LLDPE and gelatin were prepared by extrusion and hydraulic heat press technique. The gelatin content in the bioblends was varied from 5 to 20 wt%. Various physico-mechanical properties such as tensile, bending, impact strength (IS), thermal ageing and soil degradation properties of the LLDPE/gelatin bioblends with different gelatin contents were evaluated. The effect of thermal ageing on mechanical properties was studied. The mechanical properties such as tensile modulus (TM), bending strength (BS), bending modulus (BM) were found to increase with increasing gelatin content up to 20 wt%, however tensile strength (TS) and elongation at break (%E b) were decreased with increasing gelatin content. Impact strength value increased with increasing gelatin content up to 10 wt% and then decreased slightly with increasing gelatin content. The blend containing 20 wt% gelatin showed relatively better mechanical properties than other blends. The values of TS, TM,%E b, BS, BM and IS for the bioblend with 20 wt% gelatin content are 5.9MPa, 206.3MPa, 242.6%, 12.1MPa, 8 MPa and 13.7 J/cm2, respectively. Water uptake increases with increasing soaking time in water and weight loss due to soil burial also increases with increasing gelatin content in the blends but both are significantly lower than that of pure gelatin sheet. Weight loss values after thermal ageing increase with time, temperature and increasing gelatin content in the blend but are much lower than pure gelatin. Mechanical properties such as TS, TM are increased and %E b is decreased after thermal ageing at 60°C for 30 min. Consequently, among all of the bioblends prepared in this work the blend having 20% gelatin content yields properties such that it can be used as a semi-biodegradable material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号