首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Silicon carbide (SiC) coatings were produced on carbon/carbon (C/C) composites substrates using chemical vapor deposition (CVD) at different temperatures (1100°C, 1200°C, and 1300°C). The deposition rate was found to increase with deposition temperature from 1100°C to 1200°C. From 1200°C to 1300°C, the deposition rate decreased. SiC coating produced at 1200°C exhibited a strong (111) texture compared with the coatings produced at other temperatures. Both hardness and Young's modulus were also found to be higher in the coating produced at 1200°C. The variation in mechanical properties with the increase in temperature from 1100°C to 1300°C showed a direct correlation with the change in deposition rate and (111) texture. Microstructure analysis shows that the change in CVD temperature leads to the change in grain size, crystallinity, and density of stacking faults of SiC coatings, which appears to have no significant effect on mechanical properties of SiC compared with the texture observed in SiC coating. For the coating deposited at 1200°C, both the hardness and Young's modulus increased gradually from the substrate/coating interface to the top surface. The nonuniformity of mechanical properties along the cross‐section of the coating is attributed to the nonuniform microstructure.  相似文献   

2.
Polymer-derived ceramics exhibit a convenient route for the processing of low-dimensional ceramics like coatings or fibres. In previous investigations unfilled and composite coatings have been developed using ammonolysed bis(dichloromethylsilyl)ethane (ABSE) or perhydropolysilazane (PHPS) as precursors and BN, ZrO2 or glass particles as filler materials. The coating systems provide excellent corrosion and oxidation resistance to underlying metals. This paper reports on the effect of the precursor system and the pyrolysis parameters on the conversion behaviour, shrinkage and mechanical properties, including hardness and Young's modulus, of ABSE- and PHPS-based coatings. Therefore the crosslinking and pyrolysis behaviour as well as the mechanical properties of the coatings were investigated up to pyrolysis temperatures of 1000 °C in nitrogen and in air by ATR-IR, SEM, profilometry and nanoindentation measurements. The coatings pyrolysed at 1000 °C in nitrogen, have hardness values of 13 GPa and Young's moduli up to 155 GPa.  相似文献   

3.
Phenylcarbyne polymer films were coated on silicon substrates and heat treated in 1 atm pressure of argon at various temperatures. The structural changes occurring during the heat treatment process of the polymer were investigated by Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The Raman and FTIR spectra features of the polymer showed a dependence on the heat treatment temperatures. At low temperatures (below 400°C), the Raman and IR spectra of the polymer were similar to those of the original polymer. The hardness and Young's modulus of the polymer films were below 1 and 50 GPa, respectively. With increasing temperature (above 400°C), thermal decomposition of the polymer occurred, resulting in structural changes of the polymer from soft amorphous hydrocarbon (400–600°C) phases to hard carbon phases (above 600°C). The hardness and Young's modulus increased from 1.5 and 65 GPa at 600°C to 9 and 120 GPa at 1000°C, respectively. It is assumed that the hard carbon film converted from the polymer might contain sp2 and sp3 carbon phases; high temperature of heat treatment resulted in increasing sp2 (glassy) carbon phase in the films.  相似文献   

4.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

5.
This study reports the improvement in the mechanical properties of SnO2:F (FTO) thin films through the modification of the structure and surface morphology. The FTO thin films are deposited on glass substrates by the atmospheric pressure chemical vapor deposition method on an industrial production line. Both the average grain size and the surface roughness were progressively increased by increasing the flow rate of metal organic monobutyltin trichloride (MBTC). The hardness and Young's modulus of the FTO films increased from 9.01 GPa to 15.08 GPa, and from 125.24 GPa to 206.93 GPa, respectively, according to the nanoindenter results. Post-heat treatment at 650 °C for 10 min resulted in a further increase in the hardness and Young's modulus, reaching maximum values of ~15.89 GPa and ~235.9 GPa, respectively. The enhancement in mechanical properties can be attributed to the reduced grain boundaries and the improved structural densification.  相似文献   

6.
In this study, physical vapor deposition was used to prepare TiN/Ti multilayer coatings as well as the corresponding monolithic coatings for comparison. Nanoindentation using a large load range (5–4800 mN) and finite element method (FEM) simulations were conducted to investigate the influence of various multilayer structures on the mechanical behavior of multilayer coatings. The nanoindentation results show that the TiN/Ti multilayer coating has the maximum hardness and Young's modulus while retaining good crack resistance and fracture toughness. The FEM results show that increasing the number of layers in the multilayer coatings reduced the hardness and Young's modulus as well as the maximum stress, while it increased the equivalent plastic strain. As the layer thickness ratio increased, both the hardness and Young's modulus gradually increased, and the stress in the coating reached its maximum at the highest thickness ratio. In addition, to consider the effect of the indentation depth on the coating, the influence of the number of layers and the layer thickness ratio on the multilayer coating is combined into the indentation response of the multilayer coating. Therefore, we establish an expression describing the relationship between the number of layers and the ratio of the layer thickness to the mechanical properties of TiN/Ti multilayer coatings.  相似文献   

7.
ABSTRACT

The effects of preheating and annealing processes on the micromechanical features of thermally sprayed hydroxyapatite (HA) coatings were investigated. The results indicated that subsequent heat treatment at 700°C for 60?min promotes the development of a crystalline HA coating. The EDS line scan showed that the oxygen content was homogeneous along the thickness direction from the coating surface to the titanium–HA interface, whereas the calcium and phosphorus concentration gradually decreased at 7?μm from the interface. From the roughness profiles, the coatings on preheated substrates gave lower roughness compared to the coatings at room temperature. According to the nanoindentation results, the sample preheated at 300°C after annealing at 700°C exhibited an elastic modulus of 108.1?±?6?GPa and hardness of 5.97?±?0.3?GPa, which were almost 3% lower and 171% higher than the bare substrate, respectively.  相似文献   

8.
An indentation method is used to study the variations in Young's modulus, hardness and fracture toughness of air plasma‐sprayed thermal barrier coatings at a high temperature. The coatings were exposed to 1100°C during 1700 h. A sudden increase in Young's modulus for the first 600 h was observed, while the hardness increased after 800 h as a consequence of sintering. Conversely, there was a reduction of 25% in fracture toughness after 1700 h, evidencing the thermal barrier coating degradation. The evolution of these mechanical properties was correlated with microstructural changes. After 1700 h, the thermally grown oxide thickness reached 6.8 μm, the volumetric percentage of porosity was reduced from 6.8% to 4.7% and the amount of monoclinic phase increased to 23.4 wt%. These characteristics are closely related to the stress distribution in the top coat, which promotes cracks nucleation and propagation, compromising the coating durability.  相似文献   

9.
Nanoindentation and nanowear measurements, along with the associated analysis suitable for the mechanical characterization of tetrahedral amorphous carbon (ta-C) films are discussed in this paper. Films of approximately 100-nm thick were deposited on silicon substrates at room temperature in a filtered cathodic vacuum arc evaporation system with an improved S-bend filter that yields films with high values of mass density (3.2 g/cm3) and sp3 content (84–88%) when operating in a broad bias voltage range (−20 V to −350 V). Nanoindentation measurements were carried out on the films with a Berkovich diamond indenter applying loads in the 100 μN–2 mN range, leading to maximum penetration depths between 10 and 60 nm. In this measurement range, the ta-C thin-films present a basically elastic behavior with high hardness (45 GPa) and high Young's modulus (340 GPa) values. Due to the low thickness of the films and the shallow penetration depths involved in the measurement, the substrate influence must be taken into account and the area function of the indenter should be accurately calibrated for determination of both hardness and Young's modulus. Moreover, nanowear measurements were performed on the films with a sharp diamond tip using multiple scans over an area of 3 μm2, producing a progressive wear crater with well-defined depth which shows an increasing linear dependence with the number of scans. The wear resistance at nanometric scale is found to be a function of the film hardness.  相似文献   

10.
《Ceramics International》2021,47(19):27071-27081
In this work, ternary HA/chitosan/graphene oxide (GO) coating was applied via electrophoretic deposition on AZ91D magnesium alloy as bone implants, successfully. Subsequently, phase composition, surface morphology, hardness, corrosion behavior, bioactivity and antibacterial of the composite coatings were studied. Hardness and Young's modulus of the composite coatings increased from 40 ± 1.5 MPa and 3.1 ± 0.42 GPa to 60 ± 3.12 MPa and 8 ± 0.53 GPa for composite coatings with 0 and 2 wt% GO, respectively. The results of the SBF solution soaking of the composites after 24 days, indicated the improvement of HA growth due to the increasing of the GO addition in composite coating. New HA grains with leaf-like morphology grew uniformly at higher amounts of GO (1 and 2 %wt) in a perfectly balanced composition. Rate of the substrate corrosion significantly decreased from 4.3 to 0.2 (mpy), when the amount of GO increased from 0 to 2 wt% due to reduction of the surface cracks at the presence of the GO reinforcement. Also, there was no Escherichia coli and Staphylococcus aureus bacteria growth in broth medium after 24 h and OD600 results at 24 h post inoculation for the 2%wt GO addition in coating.  相似文献   

11.
ZrWN nitride films are prepared using direct current (dc) reactive magnetron sputtering. Grey Taguchi analysis is used to determine the effect of deposition parameters (substrate plasma etching time, N2/(N2+Ar) flow rates, deposition time, and substrate temperature) on the microstructure and the tribological properties. An orthogonal array, signal-to-noise ratio and analysis of variance are used to determine the effects of deposition parameters. The substrates are pretreated using oxygen plasma etching. The resulting ZrWN coatings are homogeneous, very compact and completely adhered to the substrate. In the confirmation runs, using grey Taguchi analysis, the coefficient of friction decreases from 0.45?±?0.02 to 0.35?±?0.02, the corrosion potential increases from ??0.201?±?0.01 to ??0.072?±?0.01?V, the Vickers hardness increases from 23.63?±?0.07 to 24.65?±?0.05?GPa, and reduced modulus increases from 115.82?±?1.13 to 136.17?±?1.18?GPa. The ZrWN films are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rockwell C indentation and scratch testing. The TEM pattern for the ZrWN films corresponds to the (111), (200) and (220) planes of the face center cubic structure. Samples with a ZrWN film coating are classified as HF1 and exhibit good adhesive strength. The signal of friction and the associated acoustic emission signal are analyzed, and the scratch profile is analyzed using an optical microscope. Results show that the adhesive force for the critical load Lc2 is about 76.2?±?0.5?N.  相似文献   

12.
Auxetic materials are those exhibiting negative Poisson's ratio (ν) behavior. Polymeric auxetic extruded products in the form of cylinders and fibers have previously been reported. This article reports the successful production of auxetic polypropylene films (~0.15‐mm thick) using a melt extrusion process. Video extensometry and tensile testing techniques have been used to measure the in‐plane Poisson's ratios and Young's moduli of the auxetic film, both on an Instron tensile testing machine and a Deben microtensile testing machine. The film is elastically anisotropic with the Poisson's ratio and Young's modulus along the extrusion (x) direction being νxy = ?1.12 ± 0.06 and Ex = 0.34 ± 0.01GPa, respectively, while the Poisson's ratio and Young's modulus in the transverse (y) direction to the extrusion direction are νyx = ?0.77 ± 0.01 and Ey = 0.20 ± 0.01GPa, respectively. POLYM. ENG. SCI., 45:517–528, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
The residual stress in spin coated films and the effect of heat treatments on this stress were determined by the Fizeau interference method. Three types of spin coated polyimide (PI) films have been studied. Two of them were prepared by thermal conversion of their poly(amic acid)s (PAAs) and the third one by solvent evaporation of the soluble preimidized PI. For the imidized PI films the residual stress vs. bake temperature shows an inclined steplike behavior while this function for soluble PI is approximately linear. The room temperature stress relative to silicon substrates in fully baked films (400°C) is between 40 and 70 MPa and nearly independent of the film thickness. From the stress measurement, the thermal expansion coefficient and Young's moduli have also been obtained. The thermal expansion coefficient and the Young's modulus are in the order of 9.0 × 10?6°C?1 and 10 GPa, respectively. These values deviate from those published for bulk material which is explained by the in-plane orientation of the molecular chains in spun-on PI films.  相似文献   

14.
To determine Young's modulus of coating materials when they are applied to substrates, theoretical and experimental analyses are performed. Significant residual stresses are generated within thin and thick coatings applied to substrates. As a result of these stresses, the bi-material strip assumes a certain curvature. The curved beam theory was used to establish the equivalent bending stiffness of bi-layer materials as functions of (a) the initial radius of curvature generated by residual stresses, (b) the mechanical radius of curvature during flexure testing, and (c) mechanical (Young's moduli) and geometrical (widths and thicknesses) characteristics of bi-layered systems. The relevant expression was transformed to a second- or third-order equation in order to calculate Young's modulus of the coating undergoing residual stresses (using models developed in Part I and by Stoney, Röll, and Inoue).  相似文献   

15.
In order to study the influence of the stereoreguralities of polymer chains on the mechanical properties of films of poly(vinyl alcohol) (PVA)(VTFA) derived from vinyl trifluoroacetate, the strength of the film was measured. In the case of undrawn PVA(VTFA) films, Young's modulus and strength at break were the smallest at the annealing temperature of about 100°C. It is considered to be due to the melt of small microcrystals and the increase in mobility of chains in amorphous parts. Young's moduli of undrawn PVA(VTFA) films were in the range of 1.50–3.75 GPs and the values were higher than that (0.17–0.36 GPa) of undrawn film of commercial PVA with the low concentration of syndiotacticity and the high concentration of head-to-head bounds. In the case of drawn, annealed PVA(VTFA) films, the maximum Young's modulus was about 20 GPa.  相似文献   

16.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   

17.
《Ceramics International》2020,46(12):19843-19851
Depending on the thermal spraying conditions, coatings obtained can present different defects, like pores, cracks and/or unmelted particles, and different surface roughnesses, that can affect the determination of the hardness and elastic modulus. The present work investigates the mechanical properties, determined by means of Knoop and Vickers indentations, of a plasma as-sprayed alumina coating, obtained with a nano-agglomerated powder sprayed using a PTF4 torch, in order to highlight how the surface defects interfere into the indentation process. As a main result, Knoop indentation compared to Vickers one gives less dispersive results (15% and 33%, respectively), that are, in addition, more representative of the coating properties. The mean values obtained are 110 ± 40 GPa for the elastic modulus and 1.75 ± 0.42 GPa for the hardness. In addition, and for the two indenter types used, multicyclic indentation has been performed because it allows a more appropriate characterization of such heterogeneous coatings due to the representation of the mechanical properties as a function of the indentation load and/or the penetration depth, leading to more reliable results according to the depth-variability of the coating microstructure.  相似文献   

18.
The mechanical properties of polycrystalline diamond coatings with thickness varying from 0.92 to 44.65 μm have been analysed. The tested samples have been grown on silicon substrates via microwave plasma enhanced chemical vapour deposition from highly diluted gas mixtures CH4-H2 (1% CH4 in H2). Reliable hardness and elastic modulus values have been assessed on lightly polished surface of polycrystalline diamond films.The effect of the coating thickness on mechanical, morphological and chemical-structural properties is presented and discussed. In particular, the hardness increases from a value of about 52 to 95 GPa and the elastic modulus from 438 to 768 GPa by varying the coating thickness from 0.92 to 4.85 μm, while the values closer to those of natural diamond (H = 103 GPa and E = 1200 GPa) are reached for thicker films (> 5 μm). Additionally, the different thickness of the diamond coatings permits to select the significance of results and to highlight when the soft silicon substrate may affect the measured mechanical data. Thus, the nanoindentation experiments were made within the range from 0.65% to 10% of the film thickness by varying the maximum load from 3 to 80 mN.  相似文献   

19.
《Ceramics International》2017,43(11):7992-8003
This study examines the influence of thin layer coatings of CrAlTiN and CrN/NbN, deposited via physical vapor, on the biocompatibility, mechanical, tribological, and corrosion properties of stainless steel 304. The microstructure and morphology of the thin CrAlTiN and CrN/NbN layers were characterized by scanning electron microscopy (SEM), EDX, and X-ray diffraction. The pin on disc wear test was performed on bare and metal-nitride coated SST 304 under a 15 N load at 60 rpm and showed that the wear rates of the thin CrAlTiN and CrN/NbN film coatings were lower than the bare substrate wear ratio. The coefficients of friction (COFs) attained were 0.64, 0.5, and 0.55 for the bare substrate, CrN/NbN coating, and CrAlTiN coating, respectively. Nano indentation tests were also performed on CrAlTiN-coated and CrN/NbN-coated SST 304. The nanohardnesses and Young's moduli of the coated substrates were 28 GPa and 390 GPa (CrN/NbN-coated) and 33 GPa and 450 GPa (CrA1TiN-coated), respectively. For comparison, the nanohardness and Young's modulus of the uncoated substrate were 4.8 GPa and 185 GPa, respectively. Corrosion tests were conducted, and the behaviors of the bare and metal nitride-deposited substrates were studied in CaCl2 for seven days. The corrosion Tafel test results showed that the metal-nitride coatings offer proper corrosion resistance and can protect the substrate against penetration of CaCl2 electrolyte. The CrN/NbN-coated substrates showed better corrosion resistance compared to the CrAlTiN-coated ones. In evaluating the biocompatibility of the CrAlTiN and CrN/NbN coatings, the human cell line MDA-MB-231 was found to attach and proliferate well on the surfaces of the two coatings.  相似文献   

20.
Nitrogenated carbon films were deposited on various substrates using filtered cathodic arc. Non-uniformity of the film thickness was less than 5% over a 15 cm diameter area. Mechanical, optical (refraction index, extinction coefficient versus wavelength) and electrical properties were investigated as a function of nitrogen flow rate. Deposited coatings demonstrated high hardness of 40–65 GPa, Young's modulus 200–285 GPa, excellent elastic recovery, high critical pressure for scratch formation, and surface smoothness. While the hardness showed a relatively small decrease with nitrogen flow increase, the stress decrease was more significant (8–3.8 GPa). Extremely low wear rates were observed, even at high contact pressures, and no substantial debris was detected indicating that carbon is oxidized during wear. Clear correlation was found between transparency, electrical resistivity and stress of the films. Transparency and resistivity showed a significant rise with an increase of stress. An explanation of the film properties is based on the assumption that the basic characteristics of the deposited films were determined by the relative proportion of two three dimensional complementary type of bonds; the tetrahedral sp3 bonds leading to stiff networks, and the trigonal sp2 arrangments close to fullerene-like, or nanotube-like, structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号