首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phthalonitrile containing benzoxazine (BA‐ph) and cyanate ester (CE) were chosen as the thermosetting matrix and the glass fiber (GF) reinforced laminates formed at low temperature were designed. The polyarylene ether nitriles containing pendent carboxyl groups (CPEN) was selected to modify the interfacial interaction between the resin matrix and GFs. Two methods of introducing CPEN were compared and the effects of CPEN on curing behaviors and properties of the composites were investigated. Results showed that with the CPEN, exothermic peaks shifted to lower temperature and curing temperatures of BA‐ph/CE decreased slightly. The mechanical and thermal properties of GF‐reinforced composites were discussed and the results indicated that the composites of modified GFs with CPEN exhibited outstanding mechanical properties, higher glass transition temperature (Tg > 290 °C) than that of composites composed of CPEN mixed with BA‐ph/CE. Moreover, GF‐reinforced composites showed stable dielectric constants (3.8–4.5) and low dielectric loss (0.005–0.01), which were independent of the frequency. In sum, the various methods of the introduction of CPEN in the GF‐reinforced composites may provide a new route to prepare improved composites, meanwhile, composites with outstanding processability and excellent mechanical and thermal properties are expected to be widely applied in the fields of high‐performance structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45881.  相似文献   

2.
Three composites based on cyanate (CE) resin, aluminum nitride (AlN), surface‐treated aluminum nitride [AlN(KH560)], and silicon dioxide (SiO2) for microelectronic packaging, coded as AlN/CE, AlN(KH560)‐SiO2(KH560)/CE, and AlN‐SiO2/CE composite, respectively, were developed for the first time. The thermal conductivity and dielectric constant of all composites were investigated in detail. Results show that properties of fillers in composites have great influence on the thermal conductivity and dielectric constant of composites. Surface treatment of fillers is beneficial to increase the thermal conductivity or reduce dielectric constant of the composites. Comparing with binary composite, when the filler content is high, ternary composites possess lower thermal conductivity and dielectric constant. The reasons leading to these outcomes are discussed intensively. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
To develop high performances of polymer composite laminates, differential scanning calorimetry and dynamic rheological analysis studies were conducted to show curing behaviors of 3‐aminophenoxyphthalonitrile/epoxy resin (3‐APN/EP) matrix and define cure parameters of manufacturing processes. Glass fiber reinforced 3‐APN/EP (GF/3‐APN/EP) composite laminates were successfully prepared through different processing conditions with three parameters such as pressures, temperatures, and time. Based on flexure tests, dynamic mechanical analysis, thermal gravimetric analysis, and scanning electron microscope, the complementary catalytic effect of the three processing parameters is investigated by studying mechanical behavior, thermomechanical behavior, thermal behavior, and fracture morphology of GF/3‐APN/EP laminates. The 50/50 GF/3‐APN/EP laminates showed a significant improvement in flexural strength, glass transition temperature (Tg), and thermal stability with favorable processing parameters. It was also found that the Tg and thermal stability were significantly improved by the postheated treatment method. The effect of manufacturing process provides a new and simple route for the polymer–matrix composites application, which indicates that the composites can be manufactured at low temperatures. But, they can be used in a high temperature environment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39746.  相似文献   

4.
The thermal stability and tribological properties of cyanate ester (CE) composites filled with Zirconium boride (ZrB2) particles were investigated by experimental and numerical simulation. The results of thermogravimetric analysis and differential scanning calorimetry showed that the thermal stability of composites was improved by introduction of ZrB2 particles. The tribological properties of composites including friction coefficient and wear rate measured by pin‐on‐disk friction and wear tester were enhanced. Friction coefficient and wear rate of composites were decreased significantly with an increase of ZrB2 particles content under dry and oil sliding conditions. The 5 wt% ZrB2 particles reinforced CE resin composite presented optimal thermal stability and tribological performance due to good dispersion of ZrB2 particles. The worn surfaces of composites were observed by scanning electron microscopy to explore wear mechanism, indicating that the dominant wear mechanism of composites was transformed from adhesive wear to abrasive wear after incorporation of ZrB2 particles. Finite element model was established to study the distribution of friction stress. The results revealed that filling ZrB2 particles in the friction process of composites could bear more friction stress than CE resin matrix, which further illustrated that abrasive wear is main wear mechanism of ZrB2/CE resin composites. POLYM. ENG. SCI., 59:602–607, 2019. © 2018 Society of Plastics Engineers  相似文献   

5.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   

6.
In this work, we propose a simple but effective method to fabricate BaO–B2O3–SiO2 glass/ceramic composites with different microstructures that depend on the high-temperature wetting affinity. The experimental results showed that the wetting affinity between oxide ceramic and the BaO–B2O3–SiO2 glass matrix could strongly affect the driving force of densification and crystallization and finally the microstructure of the glass/ceramic composites. It was found that suitable amounts of alumina powders could obviously increase the driving force for sintering of glass by increasing the capillary pressure. In this case, the contact angle between alumina and glass matrix is about 24° at high temperature and a densified and homogeneous microstructure of glass/alumina composite was obtained. On the contrary, rutile powders additive was found to result in higher phase separation and crystallization during the sintering of glass/rutile composites. In this case, the contact angle between rutile and glass matrix is about 124° at high temperature, and the sintered body has a lower dielectric loss than the sample with alumina additive. Therefore, the microstructure and dielectric property of glass/ceramic composites could be controlled by adjusting the ceramic composition and wetting affinity between ceramic additive and glass matrix in our study.  相似文献   

7.
Nanosilica/polyarylene ether nitriles terminated with phthalonitrile (SiO2/PEN‐t‐Ph) composites were prepared by hot‐press approach. To ensure the nano‐SiO2 can disperse uniformly, the solution casting method combined with ultrasonic dispersion technology had been taken previously. The mass fraction of nano‐SiO2 particles was varied to investigate their effect on the thermal, mechanical, and dielectric properties of the nanocomposites. From scanning electron microscope images, it was found that the nanoSiO2 particles were dispersed uniformly in the PEN‐t‐Ph matrix when the addition of nano‐SiO2 was less than 16.0 wt%. However, when the mass fraction of nano‐SiO2 increased to 20.0 wt%, the nano‐SiO2 particles tend to self‐aggregate and form microns sized particles. Thermal studies revealed that nano‐SiO2 particles did not weaken the thermal stabilities of the PEN‐t‐Ph matrix. Mechanical investigation manifested that the SiO2/PEN‐t‐Ph nanocomposites with 12.0 wt% nano‐SiO2 loading showed the best mechanical performance with tensile strength of 108.2 MPa and tensile modulus of 2107.5 Mpa, increasing by 14% and 19%, respectively as compared with the pure PEN‐t‐Ph film. Dielectric measurement showed that the dielectric constant increased from 3.70 to 4.15 when the nano‐SiO2 particles varied from 0.0 to 20.0 wt% at 1 kHz. Therefore, such composite was a good candidate for high performance materials at elevated temperature environment. POLYM. COMPOS., 35:344–350, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
将无机纳米氧化铜(CuO)粒子加入氰酸酯树脂(CE),以有机锡(DBTDL)实现自由基引发,定量加入环氧树脂(E–54)制得CE/CuO系列复合材料.测试了复合材料的力学性能、导热性能和耐酸碱腐蚀性能,讨论了复合材料性能得以改变的原因.结果表明,无机纳米CuO粒子的引入,有利于CE基体树脂的聚合,无机纳米CuO粒子含量...  相似文献   

9.
Summary A series of thermosetting polymer/ceramic composites were prepared. Three kinds of thermosetting polymers, i.e. cyanate resin, bismaleimide resin, and epoxy resin, were used as matrixes, and BaTiO3 particles were as fillers. The dielectric properties of these composites were investigated. Experimental data of the dielectric constants were fitted to several theoretical equations in order to obtain the best-fitting equations of the dielectric constants of these composites. The result indicates that the dielectric constants of composites all increase with the increase of BaTiO3 content. Using bismaleimide resin and epoxy resin as matrixes, the dielectric losses both increase obviously as the amount of BaTiO3 particles is increased, but the dielectric loss of cyanate/BaTiO3 composite decreases. With the increase of the frequency, the variation ranges of the dielectric constant and dielectric loss of cyanate/BaTiO3 composite are both the smallest. The predications of the effective dielectric constants by Lichterecker mixing rule are in good agreement with experiment data.  相似文献   

10.
Advanced wave‐transparent composites are the key materials for many cutting‐edge industries including aviation and aerospace, which should have outstanding heat resistance, low dielectric constant and loss as well as good mechanical properties. A novel kind of high‐performance wave‐transparent composites based on surface‐modified aluminum phosphate AlPO4(KH‐550) and cyanate ester (CE) was first developed. The dielectric and dynamic mechanical properties of AlPO4(KH‐550)/CE composites were investigated intensively. Results show that AlPO4(KH‐550)/CE composites have decreased dielectric loss and higher storage moduli than pure CE resin; in addition, the composites with suitable AlPO4(KH‐550) concentration remain the outstanding thermal property and low dielectric constant of pure CE resin. The reasons attributing to these results are discussed from the effects of AlPO4(KH‐550) on the key aspects such as morphology, curing mechanism, and interfacial adhesion of composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
The effect of varying cooling rate on the microstructure and resulting mechanical properties of a novel fiber-metal laminate (FML) based on a glass fiber-reinforced nylon composite has been investigated. Polished thin sections removed from plain glass fiber/nylon composites and their corresponding fiber-metal laminates indicated that the prevailing microstructure was strongly dependent on the rate of cooling from the melt. Mode I and Mode II interlaminar fracture tests on the plain glass fiber reinforced nylon laminates indicated that the values of GIc and GIIc averaged approximately 1100 J/m2 and 3700 J/m2 respectively at all cooling rates. The degree of adhesion between the aluminum alloy and composite substrates was investigated using the single cantilever beam geometry. Here, the measured values of Gc were similar in magnitude to the Mode I interlaminar fracture energy of the composite, tending to increase slightly with increasing cooling rate. The tensile and flexural fracture properties of the plain composites and the fiber metal laminates were found to increase by between 10% and 20% as the cooling rate was increased by two orders of magnitude. This effect was attributed to over-aging of the aluminum alloy plies at elevated temperature during cooling. Finally, fiber metal laminates based on glass fiber/nylon composites were shown to exhibit an excellent resistance to low velocity impact loading. Damage, in the form of delamination, fiber fracture, matrix cracking in the composite plies, and plastic deformation and fracture in the aluminum layer, was observed under localized impact loading. Here, the fast-cooled fiber metal laminates offered superior post-impact mechanical properties at low and intermediate impact energies, yet very similar results under high impact energies.  相似文献   

12.
The multi-scale reinforcement and interfacial strengthening on carbon fiber (CF)-reinforced methylphenylsilicone resin (MPSR) composites by adding silica-coated multi-walled carbon nanotubes (SiO2-CNTs) were investigated. SiO2-CNT has been successfully prepared via the hydrolysis of tetraethoxysilane in the presence of acid-oxidized multi-walled carbon nanotubes. Transmission electron microscopy, X-ray diffraction, and Fourier Transform infrared spectroscopy were carried out to examine the functional groups and structures of CNTs. Then, SiO2-CNT was incorporated into MPSR matrix to prepare CF/MPSR-based composites by the compression molding method. The effects of the introduced SiO2-CNT on the interfacial, impact, and heat-resistant properties of CF/MPSR composites were evaluated by short-beam bend method, impact test, and thermal oxygen aging experiments, respectively. Experimental results revealed that the CF/MPSR composites reinforced with 0.5 wt% SiO2-CNT showed a significant increase 34.53% in the interlaminar shear strength (ILSS) and 20.10% in impact properties. Moreover, the heat-resistant properties of composites were enhanced significantly by adding SiO2-CNT hybrid nanoparticles. These enhancements are mainly attributed to the improved matrix performance resulted from the molecular-level dispersion of SiO2-CNT in MPSR matrix and the strong interfacial adhesion between SiO2-CNT and matrix resin, which are beneficial to improve the mechanical stress transfer from MPSR matrix to CFs reinforcement and alleviate stress concentrations.  相似文献   

13.
In this article, the surface of SiO2 nanoparticles was modified by silane coupling agent N‐(2‐aminoethyl)‐γ‐aminopropylmethyl dimethoxy silane. The bismaleimide nanocomposites with surface‐modified SiO2 nanoparticles or unmodified SiO2 nanoparticles were prepared by the same casting method. The tribological performance of the nanocomposites was studied on an M‐200 friction and wear tester. The results indicated that the addition of SiO2 nanoparticles could decrease the frictional coefficient and the wear rate of the composites. The nanocomposites with surface‐modified SiO2 nanoparticles showed better wear resistance and lower frictional coefficient than that with the unmodified nanoparticles SiO2. The specific wear rate and the steady frictional coefficient of the composite with 1.0 wt % surface‐modified SiO2 nanoparticles are only 1.8 × 10?6 mm3/N m and 0.21, respectively. The dispersion of surface‐modified SiO2 nanoparticles in resin matrix was observed with transmission electron microscope, and the worn surfaces of pure resin matrix and the nanocomposites were observed with scanning electron microscope. The different tribological behavior of the resin matrix and the filled composites should be dependent on their different mechanical properties and wear mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
《Ceramics International》2016,42(6):7141-7147
Barium titanate (BaTiO3)/epoxy resin composites with a novel structure, in which the BaTiO3 particles were directionally aligned in the epoxy resin matrix, were fabricated using the ice-templating method. The effects of the filler particle alignment and the filler fraction on the dielectric permittivity as well as the dielectric loss of the composites were studied. The results show that the aligning filler particles can significantly improve the dielectric permittivity while maintaining the dielectric loss compared with the traditional composite structure (homogeneously distributed). Due to the feasibility of the enhancement of the dielectric properties of the composites, the particle alignment that is achieved via the ice-templating method can be used in the field of high energy density capacitors.  相似文献   

15.
A novel matrix resin system, oligoimide-epoxy resin, has been developed to prepare glass fiber reinforced composites. Benzidine bismaleimide-diaminodiphenyl methane (BBM-DDM) and ethyl-ene bismaieimide-diaminodiphenyl methane (EBM-DDM) oligo-mers having more —NH2 groups were prepared through the Michael addition reaction. These oligoimides were used for curing of commercial epoxy resin (i.e., diglycidyl ether of bisphenol-A) at 120°–140°C to fabricate crosslinked oligoimide-epoxy resin glass fiber reinforced composites without the evolution of byproduct. The fabricated composites (i.e., laminates) were characterized by their chemical resistance and mechanical properties.  相似文献   

16.
Acrylonitrile–butadiene rubber (NBR), a synthetic rubber having C≡N dipoles, was chosen as a polymer matrix with a higher dielectric constant than other non-polar rubber like silicone rubber or ethylene–propylene–diene monomer. Barium titanate (BaTiO3), as a ferroelectric material, with a high dielectric constant and low dielectric loss was selected as a main filler to further enhance the dielectric constant of NBR. An effective silane coupling agent (KH845-4), selected from five types of silane coupling agents with different characteristic functional groups, was used to modify the surface of BaTiO3 particles to enhance its interfacial adhesion to the matrix. Fourier transform infrared spectroscopy (FTIR) was used to verify the successful modification. The addition of BaTiO3 obviously enhanced the dielectric constants. In particular, an uncommon pattern of dielectric loss has been displayed and analyzed in this paper. Nevertheless, the reinforcing effect of mechanical strength of the NBR/treated BaTiO3 composites is limited. On this basis, the addition of nanosilica (SiO2), replacing part of NBR, improved the mechanical strength. Confirmed by scanning electron microscopy (SEM), the SiO2 and treated BaTiO3 particles were dispersed well in the NBR matrix. The tensile strength was increased from 4.33 to 6.12 MPa when SiO2 accounted for 4%. Moreover, the curing characterizations, crosslinking density, resistivity, and oil resistance were evaluated. This composite material can be used in manufacturing electronic devices, which are subjected to oily environments for a long time.  相似文献   

17.
Rigid poly(vinyl chloride) (PVC)/CaCO3 and PVC/liquid macromolecular modifier (LMM) coated CaCO3 (PVC/LCC) composites were both fabricated by melt mixing. The processability, micro‐structure, dynamic mechanical behavior and mechanical properties of PVC/CaCO3 and PVC/LCC composites were studied by using torque rheometer, scanning electron microscope (SEM), dynamic mechanical analysis (DMA), and universal mechanical testing machine. The results showed that the synergistic effect of LMM and CaCO3 particles accelerated the plasticization of PVC resins. The processability of PVC/LCC composites was improved. The dispersion of LCC in PVC matrix was improved by the modification of CaCO3 particles with LMM. The Tgs of PVC/LCC composites were enhanced by filling with LCC. Because of the synergistic toughening of LMM and CaCO3 particles, the PVC/LCC composites exhibited excellent notched impact properties at the optimum value of LCC particles content. POLYM. COMPOS., 36:1286–1292, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
This article presents the results of an experimental study on the preparation and properties of new ternary composites composed of nano‐Al2O3 particles, polyester, and epoxy resin. The ternary composites were prepared by the addition of the nano‐Al2O3 particles in a binary matrix, with elevated viscosity, of the epoxy resin modified by the polyester. The nano‐Al2O3 particles were previously located and dispersed in the polyester phase. The study showed that the ternary system was a type of nanoscale dispersed composite with high strength and toughness as well as modulus, combined with excellent dielectric and heat‐resistance properties. All related properties of the composites were remarkably superior to those of both the binary matrix and the unmodified epoxy resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 70–77, 2002  相似文献   

19.
A study on PTFE reinforced with SiO2 was described. It included the manufacturing process of SiO2-reinforced PTFE and the effects of the SiO2 content and size on the properties of the composite material, such as thermal, dielectric, tensile strength and morphology, etc. PTFE/SiO2 composites loaded with two sizes (5 μm or 25 μm SiO2) of filler contents varied from 0–60 wt% were mixed by a high-speed dispersion mixer and made via a two-roll milling machine. Our results showed that the composite filled with 25 μm SiO2 at 60 wt% filler content had the highest modulus, lowest CTE z and acceptable dielectric properties. Composites with different sizes of filler showed a similar trend of decreasing tensile strength and coefficient of thermal expansion (CTE z ), and increasing tensile modulus, water absorption and dielectric properties as the filler content increased. Furthermore, the composites filled with small-size filler showed higher water absorption and dielectric loss properties due to the presence of higher SiO2 surface area. Poor adhesion between filler and matrix is a primary cause of low tensile properties and lack of increase in thermal stability. Such phenomenon was also confirmed by fracture surface analysis of scanning electron microscope (SEM). Experimental data were compared with theoretical models from the literatures, which are used to predict the properties of two component mixtures. The results revealed that experimental values of dielectric constant and CTE z agreed with the theoretical calculated values. It was also found that the modified Nicolais-Narkis equation provided a good estimation for the tensile strength of composite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In this article, a hybrid filler based on polyhedral oligomeric silsesquioxane and silica, coded as POSS‐SiO2, has been successfully synthesized. The structure of POSS‐SiO2 was studied by Fourier‐transform infrared spectra, X‐ray diffraction, and scanning electron microscopy. Then the POSS‐SiO2 was compounded with dicyclopentadiene bisphenol dicyanate ester (DCPDCE) resin to prepare composites. The effects of POSS‐SiO2 on the curing reaction, mechanical, thermal, dielectric and tribological properties of DCPDCE resin were investigated systematically. Results of differential scanning calorimetry show that the addition of POSS‐SiO2 can facilitate the curing reaction of DCPDCE and decrease the curing temperature of DCPDCE. Compared with pure DCPDCE resin, the impact and flexural strengths of the composites materials are improved markedly with up to 72 and 52% increasing magnitude, respectively. Meanwhile, the POSS‐SiO2/DCPDCE systems exhibit lower dielectric constant and loss than pure DCPDCE resin over the testing frequency from 10 to 60 MHz. In addition, the thermal stability and tribological properties of POSS‐SiO2/DCPDCE composites are also superior to that of pure DCPDCE resin. POLYM. COMPOS., 36:1840–1848, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号