首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving magnetic-dielectric properties of polymer materials, through filler of functional ceramics, provides feasibility to develop high-frequency flexible electronics. Poly-dimethylsiloxane (PDMS), an inert silicone with low elasticity modulus and high transparency, has been considered a promising candidate for flexible electronics. Current PDMS matrix used in high-frequency devices suffers from unsatisfactory properties due to very low dielectric constant. In this study, using ultrasonic stirring and vacuum-pumping process, we prepare a series of xCo2Z/PDMS (x = 2; 4; 6; 8; 10) composite films, which are consisted of PDMS matrix and different quantity of micro-sized ferrite particles. XRD pattern indicates that the obtained ferrite particles include Co2Z main phase and BaM second phase. We demonstrate that 4Co2Z/PDMS film has improved magnetic-dielectric properties at 800 MHz (μ' = 1.49; ε' = 4.54 tanδμ = 0.058; tanδε = 0.008). Also, the film has high saturation magnetization (σs = 17.51 emu/g). Furthermore, SEM micrographs show that using ultrasonic stirring and fast curing, the micro-sized ferrite particles are well dispersed in PDMS matrix. Our study, which provides a simple method to improve high-frequency magnetic and dielectric properties of PDMS matrix, could pave the way for development of high-frequency flexible electronics.  相似文献   

2.
Rare earth (Eu3+)-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) polycrystalline ferroelectric ceramics were fabricated by high-temperature solid-state sintering, the phase structure, dielectric and piezoelectric properties were investigated. Eu3+ addition was found to significantly improve dielectric and piezoelectric properties of PMN-PT, where the optimized properties were achieved for the composition of 2.5 mol%Eu: 0.72PMN-0.28PT, with the piezoelectric d33 = 1420 pC/N, dielectric εr = 12 200 and electromechanical k33 = 0.78, respectively. All these results indicate that the Eu3+-doped PMN-PT ceramics are promising candidates for high-performance room-temperature piezoelectric devices.  相似文献   

3.
Flexible high-temperature polymeric dielectrics with advanced dielectric properties are urgently demanded in various applications. In this work, series of polymer blend films were prepared from aromatic polythiourea (ArPTU) and polyimide (PI). The experimental results revealed that the blend films were properly engineered to achieve higher breakdown strength, greater dielectric constant, and larger energy density than pure PI film. For instance, the optimum property was obtained from the blend film with 10 wt% ArPTU, exhibiting prominent dielectric properties (K = 4.52, Eb = 443 MV/m), enhanced energy density (4.00 J/cm3) as well as excellent heat resistance (Tg = 419°C). In addition, stable dielectric properties at broad temperature range from −50 to 250°C were also acquired. It is deduced that the good compatibility from ArPTU and PI with similar polarity are responsible for the improved properties. The superior comprehensive properties which combine the advantages of ArPTU and PI suggest the potential applications of ArPTU/PI blend film in high-temperature dielectric areas.  相似文献   

4.
Sixth generation (6G) wireless networks operating in terahertz frequency region are significant solutions to the increasing number of telecommunication devices and the demand for faster data transmission. However, few dielectric materials exhibiting an ultralow relative dielectric constant (εr), loss tangent (tanδ), and high mechanical strength are found suited for 6G telecommunication. In this study, we developed lightweight ceramic foams by directly sintering glass hollow spheres. The effects of sintering temperatures on their mechanical performance, and terahertz optical and dielectric properties were systematically investigated. The final compositions of ceramic foams contain glass, cristobalite, quartz, and wollastonite. The crystalline content increases with increasing sintering temperature. The ceramic foams sintered at low temperatures of 700–850°C exhibit a high porosity ranging from 74.6% to 87.3%, ultralow εr ranging from 1.41 to 1.83, and tanδ of ∼0.011 at 0.5 THz, as well as high compressive strength ranging from 10.1 to 27.4 MPa, which could be promising materials for 6G telecommunication.  相似文献   

5.
A new kind of anhydrous, transparent, and flexible potassium dihydrogen phosphate (KH2PO4 or KDP)/polyvinyl alcohol (PVA) composite in the form of film (0.10 mm) has been prepared by solution casting technique. KDP is well dispersed in the polymer matrix as observed from the microstructural studies. Frequency and temperature dependent dielectric properties of the composites have been studied with varying KDP concentrations. The PVA/KDP composite films exhibited extraordinarily high relative permittivity ε′ ∼ 430 (80 times higher compared with pure PVA and even higher than KDP) near the percolation threshold (ϕC = 2.5 wt % KDP) with low dielectric losses (∼ 0.15) at 1 kHz and room temperature. Such flexible, low loss and high dielectric permittivity material has enormous importance for application in devices. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Light-weight and flexible 2D MXene-based polymer materials with low dielectric loss and high dielectric constant have drawn great attention in the power systems and modern electronic field. A series of Ti3C2Tx/EMA composites were fabricated via simple solution casting followed by a compression molding method with various mass concentrations of Ti3C2Tx (0, 1, 3, 5, 8, 10, 12, and 15 wt%). Morphological and micro structural properties of the prepared composites were studied via X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM), where the distribution of Ti3C2Tx in the Ti3C2Tx/EMA composites was confirmed. Thermal behaviors were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) investigations. The DSC analysis reveals that the % of crystallinity decreases from 11.06 with 1 wt% to 5.68 with 15 wt%, where Ti3C2Tx acts as an efficient nucleating agent. TGA data confirm the enhancement of the thermal stability of the composites upon increasing in Ti3C2Tx loading. The room temperature electrical and dielectric behavior of the studied composites were examined in the frequency range of 100 Hz–5 MHz. In this work, the 10 wt% of Ti3C2Tx loaded poly (ethylene-co-methyl acrylate) composite (EMA) showed higher dielectric permittivity (ε′ = 124.22) with lower dissipation loss (tan δ = 0.051) at 100 Hz among all weight percentages. The behavior of charge carriers in the prepared composites was studied by utilizing the impedance spectroscopy technique. The electrical parameters were calculated from the fitted Nyquist plots with a corresponding circuit model. I–V curves confirmed the conduction mechanisms of the composites. This beneficial enhancement in electrical properties recommends the composite can be utilized in flexible electronic storage devices.  相似文献   

7.
Graphene quantum dots (GQDs) reinforced poly(vinyl alcohol) (PVA)/polypyrrole (WPPy) nanocomposite films with various GQDs loadings were synthesized using the versatile solvent casting method. The structural and morphological properties of PVA/WPPy/GQDs nanocomposite films were investigated by employing Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The thermogravimetric analysis revealed enhanced thermal stability of synthesized nanocomposites while enhanced dielectric properties were also observed. The maximum dielectric constant value for PVA/WPPy/GQDs nanocomposite films was observed to be ε = 6,311.85 (50 Hz, 150°C). The electromagnetic interference (EMI) shielding effectiveness (SE) of nanocomposite films was determined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency region. The EMI SE was found to be increased from 0.8 dB for the pure PVA film to 9.8 dB for the PVA/WPPy/GQDs nanocomposite film containing 10 wt% GQDs loading. The enhanced EMI shielding efficiency of nanocomposite films has resulted from the homogenous dispersion of GQDs in PVA/WPPy blend nanocomposites. Thus, the prepared nanocomposites are envisioned to utilize as a lightweight, flexible, and low-cost material for EMI shielding applications.  相似文献   

8.
Hexagonal boron nitride (h-BN) with low dielectric loss and high temperature resistance opens up new opportunities for the preparation of polymer-derived SiCN ceramics (PDCs-SiCN ceramics) with excellent mechanical and dielectric properties. BN-containing polymer-derived SiCN composite ceramics (PDCs-SiCN(BN) composite ceramics) with different BN content were prepared via a pyrolysis process of ball-milling-blended Polyvinylsilazane/boron nitride (PVSZ/BN) precursors. BN is stably embedded in the SiCN tissue and tightly bound with it. The appropriate content of BN greatly improves the mechanical properties of PDCs-SiCN ceramics, as BN reduces the number of pores and prevents crack expansion. Additionally, BN is also beneficial in lowering the dielectric loss of PDCs-SiCN ceramics because of the weakened polarization relaxation behavior. PDCs-SiCN (BN) composite ceramics have optimal mechanical and dielectric properties when the BN content is 1 wt%. The flexural strength, flexural modulus and compression strength of PDCs-SiCN(BN) composite ceramics with 1 wt% BN doping content were 189.37 MPa, 46.38 GPa, and 399.02 MPa, respectively. Its average dielectric loss (tanδε) at 12.4-18 GHz is 0.0049.  相似文献   

9.
《Ceramics International》2022,48(13):18522-18529
In the field of microwave dielectric ceramics for patch antennas, it has always been a thorny issue to simultaneously satisfy high dielectric constant, low sintering temperature and low dielectric loss. Here, a CCZN (x = 0.04) composite ceramic with excellent microwave dielectric properties was developed. It can be found that an appropriate amount of Co2+ substitution can enhance the compactness, increase the dielectric constant (εr), reduce the dielectric loss (tanδ) and enhance the temperature coefficient (τf). The composite ceramic with excellent dielectric properties (εr = 22.6, Q × f = 37,624 GHz, τf = ?64.9 ppm/°C) shows good sintering compatibility with Ag. Based on this composite ceramic, a high-performance patch antenna was designed for Beidou satellite navigation system (BDS). It presents a small size of 30 × 30*3.8 mm3 and excellent radiation performance (return loss = ?32.9 dB, VSWR = 1.047, impedance bandwidth = 60.6 MHz, radiation efficiency = 94.6% and realized gain = 7.704 dB). This work promotes the application of microwave dielectric ceramics in the field of patch antennas.  相似文献   

10.
In this study, lead-free (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 compositions are synthesized via conventional solid oxide route, and the ceramics are fabricated with normal sintering in air. The effects of composition fluctuations on dielectric, piezoelectric, and mechanical properties are investigated. The phase structure and the microstructure are analyzed with X-ray diffraction and scanning electron microscopy. The best dielectric and piezoelectric properties of εr = 11 207 and d33 = 330 pC/N were obtained for BZT−0.35BCT and BZT−0.5BCT ceramics, respectively. The mechanical behavior—in terms of Vickers hardness and compressive and flexural strengths—was investigated, and the best mechanical behavior was found in the vicinity of the phase transition boundary with x values between 0.5 and 0.6.  相似文献   

11.
Highly (001) oriented (K,Na)NbO3 (KNN) lead‐free piezoelectric thin films were grown on LaNiO3 (LNO)‐coated silicon by RF magnetron sputtering. The effects of the top electrodes on the electrical properties of KNN thin films were investigated. The dielectric and piezoelectric properties were remarkably improved in LNO/KNN/LNO (εr = 899 at 1 kHz, d33 = 58 pm/V), compared with that in Pt/KNN/LNO (εr = 584 at 1 kHz, d33 = 26 pm/V). An enhanced ferroelectricity was also obtained in LNO/KNN/LNO, with a remnant polarization of 12 μC/cm2 and a maximum polarization of 23 μC/cm2 at the applied field of 200 kV/cm. Besides, the temperature dependence of piezoelectricity of the films was characterized in this study.  相似文献   

12.
In order to meet the requirements of polymer dielectric materials for high thermal stability and excellent dielectric properties in the application of high-temperature film capacitors, a series of polyimide (PI) films are fabricated by introducing a self-synthesized aniline trimer (ACAT) with a conjugated structure in this work. Since the conjugated ACAT in the main chains of PI improves the electron polarization and carrier mobility of the PI molecular chains, the dielectric constant of the ACAT-PI films is greatly enhanced (4.4–7.4). Meanwhile, the dissipation factor does not increase apparently (0.002–0.013). The dielectric properties are stable even when the temperature is up to 200 °C, the thermal degradation temperature is as high as 450 °C, and the mechanical properties are also excellent (70–105 MPa). Among all the films, the PI film with 5 mol% ACAT exhibits the maximal energy density of 3.6 J cm−3 under the field of 426 kV mm−1, the high tensile strength (90 MPa) and the excellent thermal stability (Td5 = 515 °C). The work paves the way to prepare high-temperature polymer dielectric film materials with high energy storage density.  相似文献   

13.
《Ceramics International》2020,46(6):7531-7540
The modified 0.7Ba (Co1/3Nb2/3)O3-0.3Ba(Zn1/3Nb2/3)O3 (BCZN) powders filled PTFE composites were synthesized by hot-pressing. The influences of BCZN content on the microstructure, dielectric, thermal, mechanical properties and moisture absorption were investigated systematically. The modified BCZN powders filled PTFE composites exhibited better microstructure and dielectric properties compared with untreated powders. Various mathematic models were utilized to predict the dielectric constant of different composites and the effective medium theory (EMT) showed perfect consistency with the experimental results. The modified BCZN/PTFE composites possess the best comprehensive properties at the powders content of 50 vol% with high dielectric constant (εr) of 7.7, low loss (tanδ) of 0.0014, acceptable temperature coefficient of dielectric constant (τε) of −125.6 ppm/°C and temperature coefficient of resonant frequency (τf) of 29.4 ppm/°C at 7 GHz, low moisture absorption of 0.07% and low coefficient of thermal expansion (CTE) of 33 ppm/°C. All the results show modified BCZN/PTFE composites are the potential materials for microwave substrate applications.  相似文献   

14.
Conducting hydrogel copolymer was prepared by graft copolymerization of carboxymethyl cellulose (CMC) and boric acid onto poly(vinyl alcohol) (PVA). The dielectric properties of CMC‐g‐PVA/prehydrolyzed banana blend have been investigated as a function of frequency, with special reference to pure prehydrolyzed banana. Also, the static bending for the blend was determined and no abrupt failure was observed. The dielectric properties measured were dielectric constant (ε′), dissipation factor (tan δ), and loss factor (ε″). At high frequencies, a transition in the relaxation behavior was observed, whereby the dielectric constant, loss tangent, and loss factor decreased with frequency. Experimental ε′ values of the blend are greater than those of prehydrolyzed banana. The dielectric behavior depends greatly on the nature of the present group, the crystallinity of the system, and the degree of hydrogen bonding between the different chains. The variation of the dielectric properties was correlated with blend morphology and also to the possibility for interfacial polarization that arises because of the differences in conductivities of the two phases. It was found from the infrared spectra that the incorporation of CMC‐g‐PVA copolymer decreases the crystallinity of the blend and also decreases the degree of hydrogen bonding, which results in a high dielectric constant. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1842–1848, 2006  相似文献   

15.
Multifunctional designs of biomimetic layered materials are in great demand for broadening their applications. Artificial hybrid films are fabricated using a simple evaporation-induced assembly method, using nacre as the structural model, two-dimensional reduced graphene oxide (RGO) and magnetic graphene (MG) as inorganic building blocks and poly(vinyl alcohol) (PVA) as glue. The nacre-like films exhibit good mechanical performance, such as high stiffness, strength and toughness. The biomimetic materials possess the shielding properties of electromagnetic pollution. MG based nacre-like films present more significant electromagnetic interference (EMI) shielding performance than RGO film, because of a synergism between dielectric loss of graphene and magnetic loss of magnetic nanoparticles. Average EMI shielding effectiveness (SE) reaches ∼20.3 dB over the frequency range of 8.2–12.4 GHz (X band) for MG hybrid film only 0.36 mm thick. The lightweight, flexible and thin MG artificial hybrid films possess good potential for EMI shielding applications.  相似文献   

16.
ZTM ceramics comprising of 0.75ZnAl2O4–0.25TiO2 and MgTiO3 at a ratio of 90:10 wt.% are widely used in the field of communication as filters and resonators owing to their excellent microwave dielectric properties. However, the development of such dielectrics with complex structures, as required by microwave devices, is difficult using traditional fabrication methods. In this study, ZTM microwave dielectric ceramics were prepared using the digital light processing (DLP) technology. The influence of the sintering temperature on the phase composition, microstructure, and microwave dielectric properties of ZTM ceramics was investigated. Results showed that with an increase in the sintering temperature, the dielectric constant (εr) and quality factor (Q × f) of ZTM ceramics initially increased owing to the increase in the density and diffusion of ions. However, when the sintering temperature was excessively high, the abnormal growth of crystal grains and micropores led to a decrease in εr and Q × f. The ZTM ceramics sintered at 1450°C exhibited the optimum microwave dielectric properties (εr = 12.99, Q × f = 69 245 GHz, τf = −9.50 ppm/°C) owing to the uniform microstructure and a high relative density of 95.02%. These results indicate that DLP is a promising method for preparing high-performance microwave dielectric ceramics with complex structures.  相似文献   

17.
Herein, the crystal structure, dielectric properties, and gyromagnetic characteristics of Zn–Sn codoped Y3ZnxSnxFe5−2xO12 (x = 0.0–0.5) prepared using a conventional ceramic process were investigated. According to the first-principles’ calculations and complex crystal bonding theory, Zn2+–Sn4+ codoping can increase the relative dielectric constant (εr) by enhancing the average ionicity. The x-ray photoelectron spectroscopy (XPS) and Raman analysis results indicate that an appropriate amount of Zn2+–Sn4+ codoping can help improve the microscopic morphology, maintain the appropriate ratio of divalent iron ions, and reduce the microwave magnetic and electrical losses of YIG ferrites. The optimized microwave properties are as follows. Y3Zn0.3Sn0.3Fe4.4O12 after sintering at 1400°C; εr = 15.6; dielectric loss, that is, tanδε = 4.3 × 10−4; saturation magnetization, that is, 4πMS = 2244 G; ferromagnetic resonance linewidth, that is, ΔH = 37 Oe. These properties can help improve the performance of high-frequency microwave components by enhancing the properties of ferrite.  相似文献   

18.
Ba0.3Sr0.475Ce0.03La0.12Ti0.997Mn0.003O3/Polytetrafluoroethylene (PTFE) composites were prepared using powder processing technique. The effects of the ceramic filler volume fraction and the coupling agent on the phase composition, microstructure, dielectric and thermal properties of the composites were investigated in this paper. The ceramic filler dispersion in the PTFE matrix, thus the dielectric loss, permittivity, and dimensional thermal stability of the composite was considerably improved by the modification of BST filler surface using phenyl trimethoxy silane (PTMS) coupling agent. Variation of the dielectric permittivity of the composite with composition was well fitted by the effective medium theory (EMT) model in the experimental compositional range. The obtained silane-treated composite with 0.5 Vf BST exhibits extremely low dielectric loss: εr = 16, tan δ = 5.4 × 10−4 @1 MHz and 5.16 ± 0.6 × 10−3 @ 10 GHz. The CTE of the composites was reduced to 43 ppm/°C.  相似文献   

19.
To develop high-performance piezo-/ferroelectric materials, Bi(Zn½Ti½)O3–PbZrO3–PbTiO3 (BZT–PZ–PT) ternary solid solution with compositions around the morphotropic phase boundary (MPB) is synthesized by solid-state reaction. The crystal structure and electric properties are investigated systematically by X-ray powder diffraction (XRD), dielectric spectroscopy, and ferroelectric and piezoelectric measurements. On the basis of the results of the XRD, dielectric and ferroelectric measurements, the pseudo-binary phase diagram of the yBi(Zn½Ti½)O3–(1 − y)[(1 − x)PbZrO3xPbTiO3] system has been constructed for three series, namely, y = 0.05, 0.10, and 0.15. It is found that the introduction of BZT into the PZT system makes the paraelectric to ferroelectric phase transition more diffuse, brings the MPB to a lower PT content, and enlarges the MPB region. The best properties with an improved dielectric constant ε' = 1248, and a large remnant polarization Pr = 33 μC/cm2, as well as a relatively high TC = 286°C, and a high coercive field Ec = 23 kV/cm was achieved in the y = 0.15 series with MPB composition x = 0.425, making it a promising material for high-power piezoelectric applications.  相似文献   

20.
(Mg1 − xCax)2SiO4 dense ceramics (x ≥ 0.15) were prepared, and their microwave dielectric characteristics were investigated together with the structure evolution. The sintering temperature for Mg2SiO4 ceramics was reduced significantly with Ca2+substitution. (Mg1 − xCax)2SiO4 ceramics exhibited a small increase in dielectric constant (εr) correlated with increased crystallite size, and ultra-high quality factor Qf value was achieved throughout the compositional range. Temperature coefficient of resonant frequency (τf) was considerably tuned from −70 ppm/°C to −33 ppm/°C, and this improvement was deeply linked with the decreased bond valance. At x = 0.075, (Mg1 − xCax)2SiO4 ceramics exhibited the best combination of microwave dielectric characteristics: ε= 7.2, Qf = 199,800 GHz at 26 GHz, τ= −33 ppm/°C. The present ceramics could be expected as promising candidate of dielectric materials for millimeter wave applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号