首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work aims at preparing and characterizing poly(butyl acrylate) (PBA)—laponite (LRD) nanocomposite nanoparticles and nanocomposite core (PBA‐LRD)‐shell poly(methyl methacrylate) (PMMA) nanoparticles, on the one hand, and the morphology and properties of poly(lactic acid) (PLA)‐based blends containing PBA‐LRD nanocomposite nanoparticles or (PBA‐LRD)/PMMA core–shell nanoparticles as the dispersed phase, on the other hand. The PBA and (PBA‐LRD)/PMMA nanoparticles were synthesized by miniemulsion or emulsion polymerization using LRD platelets modified by 3‐methacryloxypropyltrimethoxysilane (MPTMS). The grafting of MPTMS onto the LRD surfaces was characterized qualitatively using FTIR and quantitatively using thermogravimetric analysis (TGA). The amounts of LRD in the PBA‐LRD nanocomposites were characterized by TGA. The PBA/PMMA core–shell particles were analyzed by 1H‐NMR. Their morphology was confirmed by SEM and TEM. Mechanical properties of (PBA‐LRD)/PLA blends and (PBA‐LRD)/PMMA/PLA ones were tested and compared with those of the pure PLA, showing that core–shell particles allowed increasing impact strength of the PLA while minimizing loss in Young modulus and tensile strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
We report here a general approach to using poly(amidoamine) (PAMAM) dendrimers modified with polyethylene glycol (PEG) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for in vitro cancer therapy applications. In this approach, PEGylated PAMAM dendrimers were synthesized by conjugating monomethoxypolyethylene glycol with carboxylic acid end group (mPEG‐COOH) onto the surface of generation 5 amine‐terminated PAMAM dendrimer (G5.NH2), followed by acetylation of the remaining dendrimer terminal amines. By varying the molar ratios of mPEG‐COOH/G5.NH2, G5.NHAc‐mPEGn (n = 5, 10, 20, and 40, respectively) with different PEGylation degrees were obtained. We show that the PEGylated dendrimers are able to encapsulate DOX with approximately similar loading capacity regardless of the PEGylation degree. The formed dendrimer/DOX complexes are water soluble and stable. In vitro release studies show that DOX complexed with the PEGylated dendrimers can be released in a sustained manner. Further cell viability assay in conjunction with cell morphology observation demonstrates that the G5.NHAc‐mPEGn/DOX complexes display effective antitumor activity, and the DOX molecules encapsulated within complexes can be internalized into the cell nucleus, similar to the free DOX drug. Findings from this study suggest that PEGylated dendrimers may be used as a general drug carrier to encapsulate various hydrophobic drugs for different therapeutic applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40358.  相似文献   

3.
The interactions between nanoparticles and cells or tissues are frequently mediated by different biomolecules adsorbed onto the surface of nanoparticles. In this study, several methoxy poly(ethylene glycol)‐poly(ε‐caprolactone) (mPEG‐PCL) copolymers with various mPEG/PCL ratios were synthesized and used to produce three types of mPEG‐PCL nanoparticles. The protein‐adsorption behavior of nanoparticles was assessed using fetal‐bovine‐serum (FBS) as a model protein. The cell uptake of nanoparticles at different nanoparticle doses as well as various culture periods was examined by measuring their endocytosis rate related to Hela cells cultured in FBS‐free and FBS‐contained media. The blood clearance of nanoparticles was evaluated using Kunming mice to see the differences in circulation durations of nanoparticles. Results suggest that that FBS is able to significantly regulate the cell uptake of nanoparticles in vitro, and on the other hand, the size and mPEG/PCL molar ratio of mPEG/PCL nanoparticles are closely correlated to their blood clearance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42884.  相似文献   

4.
Biphasic calcium phosphate (BCP) based materials possessed with both excellent biocompatibility and antibacterial activity show potential advantages for biomedical applications. Here, the silver-doped BCP/Alginate (AgBA) microclusters were first fabricated using the double-emulsions method. First, BCP nanoparticles were incorporated into the alginate network to form BCP/Alginate microclusters via the emulsion process. Then, silver nanoparticles (AgNPs) were in situ involved in BCP/Alginate networks to obtain the final AgBA microclusters. Transmission electron microscopy and scanning electron microscopy confirmed that BCP nanoparticles and AgNPs were uniformly distributed in AgBA microclusters. The morphology of AgBA microclusters could be regulated by adjusting emulsion power, and microclusters using the medium powder (500 W) showed a regular spherical shape. Furthermore, CCK-8 analysis identified that AgBA microclusters were cytocompatible culturing with human bone marrow-derived mesenchymal stem cells. Qualitative antibacterial tests exhibited the excellent inhibition effects of AgBA microclusters against Staphylococcus aureus (Gram-positive) and Escherichia coli. (Gram-negative). Lastly, the doxorubicin (DOX)-loaded AgBA microclusters presented adjustable loading efficiency of DOX and controllable release profiles. The cumulative release could reach 73.3% after 72 h in PBS. The above results raised a new route for antibacterial microclusters development for biomedical applications.  相似文献   

5.
Composites of the poorly water soluble drug ibuprofen, a nonsteroidal anti‐inflammatory commonly used for pain relief, with layered silicates (nanoclays) and a poly(ethylene glycol) (PEG) were prepared by hot melt extrusion. A highly intercalated and partially exfoliated morphology was determined using wide‐angle x‐ray diffraction, field emission scanning electron microscopy, and high‐resolution transmission electron microscopy. The crystalline content of PEG was significantly reduced, as shown by differential scanning calorimetry studies, as a consequence of the large surface area of clay platelets physically hindering polymer chain dynamics and, in the case of montmorillonite, by tethering of PEG via hydrogen bonding. Addition of layered silicate retarded the release of ibuprofen from the PEG matrix, even though the crystalline content of PEG was reduced. This study therefore indicates that drug release in solid dispersion systems may be modified or indeed tailored by the inclusion of layered silicates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40284.  相似文献   

6.
Because of the good fluorescence of zinc phthalocyanine-phenolic resin (ZnPc-PFR) photosensitizer and large specific surface area of mesoporous silica nanoparticles (MSNs), a highly efficient nano-drug carrier system, denoted as ZnPc-PFR@MSN, was constructed for photothermal therapy (PTT) and pH-sensitive drug delivery. The facile hydrothermal reaction was used to synthesize ZnPc-PFR nanoparticles in one-step. After loading the as-synthesized ZnPc-PFR nanoparticles into MSNs, and a good high drug-loading rate (143.7 mg g−1) to the anticancer drug of Adriamycin (DOX) could be obtained. Thus, a novel nanosphere with the merits of good fluorescence, high drug-loading rate (143.7 mg g−1), better sustained-release properties, and photothermal properties (reached 43.23°C within 260 s) was prepared. The as-synthesized multifunctional composites make it a good candidate in fluorescence imaging, PTT, and drug delivery.  相似文献   

7.
Curcumin (CUR) is a natural active ingredient that attracted much attention for its chemotherapeutic activity against tumors without causing toxicity in healthy cells. However, it has certain limitations for being used in chemotherapy such as low aqueous solubility and hydrolytic instability in the physiological environment. In this study, self-assembled poly(ethylene glycol) methyl ether-grafted gelatin (Gel-mPEG) nanogels were fabricated as delivery systems to improve the applicability of CUR in cancer treatment. CUR-loaded Gel-mPEG nanogels exhibited desired size range, relatively colloidal stability, and provided enhanced CUR stability in aqueous solutions. Especially, they showed significant high CUR loading capacity and better anticancer activity than free CUR as compared to previously reported CUR-loaded nanogels according to the best of our knowledge. Moreover, the in vitro release of CUR from the nanogels was controlled and prolonged up to 96 h. These results demonstrated that Gel-mPEG nanogels are the promising modality for the efficient delivery of CUR in cancer treatment. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47544.  相似文献   

8.
Poly(lactic acid) (PLA)/nano zinc oxide/copper chlorophyll acid (CCA) antibacterial nanocomposites with excellent mechanical properties were prepared in the presence of a chain extender named tolylene diisocyanate (TDI). The effect of the chain extender on the PLA long chain was confirmed by the increased molecular weight shown in the mass flow rate and gel permeation chromatography. Escherichia coli were adopted to examine the antibacterial ability of the blends. The effect of CCA is also discussed with regard to the enhancement of the antibacterial effect of zinc oxide (ZnO) over E. coli. Scanning electron microscopy and transmission electron microscopy were used to view the agglomeration and dispersion of ZnO in the PLA matrix. Differential scanning calorimetry and thermogravimetric analysis revealed a relatively stable thermal performance of the nanocomposites with and without TDI. A sharp increase in the mechanical properties was also observed after the addition of the chain extender under different processing conditions. Additionally, we found that the nanocomposites with the incorporation of TDI and the masterbatches in batches effectively improved the mechanical properties of PLA/ZnO/CCA without a sacrifice of the antibacterial effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41561.  相似文献   

9.
Poly(lactic acid) (PLA) is used in packaging applications, but its moisture barrier properties are inferior to poly(ethylene terephthalate) and polystyrene. One objective of the study was to improve these by dispersing nanoclay in PLA. It was found that Cloisite 30B nanoclay showed the best dispersion based on both permeability and transmission electron microscopy results. Compression molded nanocomposite films were amorphous, and moisture permeability measurements revealed that, at the highest loading level of 5.3 vol % organoclay, permeability was reduced by 69% compared to neat PLA. Additionally, independent experiments demonstrated that moisture solubility in the polymer remains unchanged even as solubility in the nanocomposite increases with increasing clay content. A second objective was to explain the measured permeability reduction. A new model is proposed where both the mass flux and area for mass transfer are reduced due to a tortuous path around the impermeable barriers. It is shown that the permeability decreases by a factor of where h/t is the aspect ratio of the nanoplatelets, and ? is their volume fraction. Model predictions agree quantitatively with the measured permeability values when data are obtained as a function of filler volume fraction, temperature of measurement, and the concentration driving force. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46506.  相似文献   

10.
The miniaturization trend of electronic devices requires that components have a high heat dissipation in industrial applications and in daily life. In this context, a highly thermally conductive film was fabricated with silver nanowire (AgNW) and poly(vinylidene fluoride) (PVDF) with a bar‐coating method. The thermal transport performance and mechanism of the AgNW/PVDF composite film were investigated. The through‐plane and in‐plane thermal conductivity of the AgNW/PVDF composite film reached 0.31 and 1.61 W m?1 K?1, respectively; these values far exceeded those of the pristine PVDF film. The experiment illustrated that the thermally conductive pathways formed successfully in the PVDF substrate with the addition of AgNW, and the heat tended to transfer along the thermally conductive pathway rather than along the PVDF substrate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43554.  相似文献   

11.
Phasin protein (PhaP) is known to anchor into the matrix of phospholipid surrounding polyhydroxyalkanoic acid (PHA) inclusion bodies formed in bacterial cells and regulate the size of the granules, as well as the number of PHA granules. To investigate the effect of phasin on the formation of artificial poly(3‐hydroxybutyrate) (P(3HB)) granules in vitro, (His)6‐tagged or GST‐fusion recombinant phasin was prepared and utilized for the artificial granule preparation. In addition, a P(3HB) depolymerase was coloaded with the recombinant phasin to prepare self‐degradable phasin‐coated P(3HB) granules. A water/chloroform two‐phase emulsion technique was used, in which the emulsification was carried out by sonication, and the chloroform in the emulsion was removed by stirring‐aided evaporation at room temperature or 65°C. Slower chloroform removal at room temperature produced better spherically shaped P(3HB) nanogranules, which were uniformly sized (~100 to 200 nm in diameter). The self‐degradability of P(3HB) depolymerase‐loaded P(3HB) nanogranules was investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41074.  相似文献   

12.
Thin-film nanocomposite (TFN) nanofiltration (NF) membranes with superior properties were prepared using hydrophilic SiO2 (HGPN-SiO2) nanoparticles as the inorganic modifying monomer by an interfacial polymerization (IP) process. The effects of HGPN-SiO2 on the morphology and surface properties of the prepared NF membranes were characterized by attenuated total reflectance–Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, surface zeta potential, and static contact angle. The addition of HGPN-SiO2 can effectively improve the permeate flux of the NF membranes. When the HGPN-SiO2 concentration in the aqueous phase was 0.08 wt %, the permeate flux of the TFN-NF membrane was twice that of the pure NF membrane. Furthermore, the acid resistance of the TFN-NF membrane was clearly improved with the addition of HGPN-SiO2. Under neutral conditions, the TFN-NF membrane showed superior flux and salt rejection stability in a long-running operation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47436.  相似文献   

13.
Polymeric nanoparticles have great potential for targeted and controlled delivery of drugs for several health treatments. In this work, pullulan-graft-poly(ε-caprolactone) (Pull-g-PCL) nanoparticles were prepared and used to encapsulate indomethacin via dialysis. The nanoparticles were characterized with respect to size, size distribution, and morphology, using dynamic light scattering and transmission electron microscopy. The average diameter of nanoparticles was 220.0 and 273.7 nm, with and without indomethacin, respectively. Encapsulation of indomethacin and its release from the nanoparticles were studied, and the calculated value of indomethacin efficiency encapsulation was 35.05 wt%. The ensuing release kinetics were evaluated in vitro at 37°C and pH 7.4 and evidenced the efficiency of polymer nanoparticles in reducing the release rate of the ingredient. Pull-g-PCL nanoparticles represent, therefore, promising materials with potential for application in controlled release systems of hydrophobic substances.  相似文献   

14.
Temperature‐ and NIR irradiation‐responsive microparticles composed of cinnamoyl poly(N‐isopropylacrylamide‐co‐hydroxyethylacrylate) [CinP(NIPAM‐HEA)] and gold nanoparticle (GNP) were prepared by a spray‐drying method. According to the cloud points determined by an optical method, the HEA content in P(NIPAM‐HEA) had no marked effect on the lower critical solution temperature (LCST). However, the cinnamoyl group content in CinP(NIPAM‐HEA) had a significant effect on the LCST. The LCSTs determined by a calorimetric method was in agreement with those determined by an optical method. The hydrodynamic mean diameter of gold nanoparticle (GNP) prepared by reducing gold ions was about 30 nm and it seemed to be a nanosphere on TEM photo. Spray‐dried CinP(NIPAM‐HEA) microparticles containing GNP was 1.5 μm to 12 μm in diameter on SEM photo. Gold was detected on the energy‐dispersive X‐ray spectrum of the microparticles. The amount of FITC‐dextran released for 12 h from the microparticles was much higher at temperatures above the LCST (at 37 °C and 45 °C) than below the LCST (at 20 °C and 25 °C). The cumulative release amount in 12 h was only about 3% without NIR irradiation, whereas the value was about 26.5% when NIR was irradiated to the microparticle suspension. The photothermal energy generated by GNP was believed to render the thermosensitive copolymers de‐swollen and hydrophobic, allowing for the active release of dye from the microparticles. The NIR irradiation‐responsive GNP‐loaded microparticles could be applied to the development of NIR‐responsive drug carriers which release their contents in response to an external stimulus (i.e., NIR irradiation). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44141.  相似文献   

15.
Surfaces with antibacterial and antistatic functionalities are one of the new demands of todays' industry. Therefore, a facile method for the preparation of multifunctional polyaniline/copper/TiO2 (PANI/Cu/TiO2) ternary nanocomposite based on in situ polymerization is presented. This nanocomposite was characterized through the different techniques and was utilized for induction of antibacterial and antistatic properties in polyurethane coatings. Measurement of the conductivity of PANI/Cu/TiO2 ternary nanocomposite indicated higher electrical conductivity of this nanocomposite compared to pure PANI. The antibacterial activity of the modified polyurethane coatings was tested against Gram-positive and Gram-negative bacteria which led to remarkable reduction in bacterial growth. Besides, it was observed that polyurethane coating with 2 wt % content of ternary nanocomposite has a surface electrical resistance equal 4 × 108 Ω/sq which acquires surface electrical resistance of standard antistatic coatings. The final coatings were also characterized in terms of thermal and mechanical properties to investigate the effect of the ternary nanocomposite on improvement of these properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48825.  相似文献   

16.
Poly(lactic acid) (PLA) composite filaments with different copper (Cu) contents as high as 40 and 20 wt% of poly(methyl methacrylate) (PMMA) beads have been fabricated by twin-screw extruder for 3D printing. A fused-deposition modeling (FDM) 3D printing technology has been used to print the PLA composites containing hybrid fillers of Cu particles and PMMA beads. The morphology, mechanical, and thermal properties of the printed PLA composites were investigated. The tensile strength was slightly decreased, but storage modulus and thermal conductivity of PLA composites were significantly improved by adding Cu particles in the presence of PMMA beads. The PLA composites with hybrid fillers of 40 wt% of Cu particles and 20 wt% of PMMA beads resulted in thermal conductivity of 0.49 W m−1 K−1 which was three times higher than that of the bare PLA resin. The facilitation of the segregated network of high-thermally conductive Cu particles with the PMMA beads in PLA matrix provided thermally conductive pathways and resulted in a remarkable enhancement in thermal conductivity.  相似文献   

17.
Oral chemotherapy is quickly emerging as an appealing option for cancer patients. It is less stressful because the patient has fewer hospital visits and can still maintain a close relationship with health care professionals. Three kinds of nanoparticles made from commercial poly(ε‐caprolactone) (PCL) and self‐synthesized d‐α‐tocopheryl poly(ethylene glycol) 1000 succinate ‐b‐poly(ε‐caprolactone‐ran‐glycolide) [TPGS‐b‐(PCL‐ran‐PGA)] diblock copolymer were prepared in this study for the oral delivery of antitumor agents, including chitosan‐modified PCL nanoparticles, nonmodified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles, and chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles. First, the TPGS‐b‐(PCL‐ran‐PGA) diblock copolymer was synthesized and structurally characterized. Chitosan was adopted to extend the retention time at the cell surface and thus increase the chance of nanoparticle uptake by the gastrointestinal mucosa and improve the absorption of drugs after oral administration. The resulting TPGS‐b‐(PCL‐ran‐PGA) nanoparticles were found to be of spherical shape and around 200 nm in diameter with a narrow size distribution. The surface charge of the TPGS‐b‐(PCL‐ran‐PGA) nanoparticles could be reversed from anionic to cationic after surface modification. The chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles displayed a significantly higher level of cellular uptake compared with the chitosan‐modified PCL nanoparticles and nonmodified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles. In vitro cell viability studies showed the advantages of the chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles over Taxol in terms of their cytotoxicity against human RT112 cells. In summary, the oral delivery of antitumor agents by chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles produced results that were promising for the treatment of patients with bladder cancer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2118–2126, 2013  相似文献   

18.
A series of optically transparent ZnS‐poly(vinylpyrrolidone) (PVP) nanocomposite films with high refractive indices and high Abbe numbers have been prepared. Mercaptoethanol (ME) capped ZnS nanoparticles (NPs) were introduced into the PVP polymer matrix via simple blending with high nanophase contents. ME‐ZnS NPs of around 3 nm were prepared from zinc acetate and thiourea precursors in N,N‐dimethylformamide using ME as a capping agent. Transparent nanocomposite films with high refractive indices and high Abbe numbers can be easily prepared by a conventional film casting method. TGA results indicated that the ZnS/PVP nanocomposite films exhibit good thermal stability and the measured contents of ZnS NPs in the films agree well with the theoretical values. The refractive indices and the Abbe numbers of the ZnS/PVP nanocomposite films range from 1.5061 to 1.7523 and 55.6 to 20.4 with the content of ME‐ZnS NPs varied between 0 and 80 wt %, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A new class of biodegradable crosslinked hydrogel, consisting of hydrophobic polylactic acid (PLA) and hydrophilic dextrin in presence of crosslinker N,N‐methylene bisacrylamide (MBA) has been synthesized by free‐radical polymerization technique using potassium persulfate (KPS) as initiator. By variation of crosslinker concentration, a series of hydrogels have been prepared and the optimized grade has been selected on the basis of higher crosslinking efficiency as well as lower equilibrium swelling characteristics, XRD analysis. The hydrogels have been characterized by FTIR spectra, 13C‐NMR spectra, CHN analysis, SEM analysis, swelling characteristics, and toxicity study. In vitro release study of model drugs (ciprofloxacin and ornidazole) from hydrogel matrix has been performed in various buffer solutions at 37°C. The drug release kinetics and mechanism have been studied using zero order, first‐order kinetic models, Korsemeyar–Peppas model, Higuchi model, Hixson–Crowell model, and nonlinear Kopcha model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40039.  相似文献   

20.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号