首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene nanoplatelets (GNP) is noncovalently functionalized with imidazolium-, pyridinium-, and vinyl-pyridinium-based ionic liquids containing bromide or bis(trifluoromethyl-sulfonyl)imide (TFSI) as the counteranions, and used to prepare poly (methyl methacrylate) (PMMA) nanocomposites by solution casting approach followed by compression molding technique. The PMMA composites loaded with 1.9 and 1.8 wt% of GNP in PMMA/GNP composite and PMMA/GNP/ionic liquids, respectively, were characterized by melting viscosity, thermogravimetric analysis and AC electrical conductivity (σAC). The microwave absorption properties at the X-band (8.2–12.4 GHz) frequency were measured for systems with 1 mm thickness using the metal-backed configuration. PMMA nanocomposites loaded with GNP/N-dodecyl-4-vinyl-pyridinium.TFSI (C12ViPy.TFSI) displayed higher thermal stability and higher σAC. This system also presented the best response in terms of microwave absorbing properties, with minimum reflection loss (RL) of around −6 dB at 8.7 GHz. Triple layered composite structures with layers of different conductivities and different stacking orders were also investigated in terms of reflection loss. Broadband absorption with minimum RL ≤ −10 dB (90% of electromagnetic attenuation) in the frequency between 10.2 and 12.4 GHz and better absorbing effectiveness were observed for the PMMA/GNP-PMMA/GNP/C12ViPy.TFSI-PMMA/GNP/C12ViPy.Br triple-layered system with 3 mm thickness.  相似文献   

2.
In this work, polyvinyl butyral (PVB) nanocomposites reinforced with 0.5 to 2.5 wt % of graphene oxide (GO) and graphene nanoplatelets (GNP) were synthesized via in situ polymerization. Dynamic mechanical analysis showed that PVB/GO 2.5 wt % nanocomposites present the largest storage modulus, with increases of 10 °C in the PVB glass transition temperature. The degree of entanglement and the reinforcement efficiency factor (C coefficient) were evaluated using the dynamic mechanical analysis results and correlated with scanning electron microscopy analyses. The degree of entanglement and C coefficient values were higher for PVB/GO 2.5 wt %, enabling the enhancement of PVB mechanical properties. The adhesion factor A was used to evaluate the interfacial interaction, evidencing an improvement in the nanoparticle/matrix adhesion for PVB/GO 2.5 wt % caused by interactions between GO oxygenated groups. For the samples reinforced with GNP, the results of storage modulus, degree of entanglement, coefficient C, and adhesion factor A were not significantly modified, due to weak interfacial interactions with PVB, preventing the exfoliation of GNP in PVB during the in situ polymerization process. Therefore, in situ polymerization will improve the dispersion and final properties of the nanocomposite with PVB only if the nanoparticle has a relevant interfacial interaction during the synthesis process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46157.  相似文献   

3.
The deformation of polymers at constant applied stress is one of their major drawbacks, limiting their use in advanced applications. The study of this property using classical techniques requires extensive testing over long periods of time. It is well known that reinforced polymers show improved behavior over time compared to their neat counterparts. In this study, the effect of adding different amounts of graphene nanoplatelets (GNPs) on the time-dependent properties of high-density polyethylene (HDPE) is investigated using short-term creep tests and load/unload recovery tests. The results are discussed in terms of the test profile and the influence of loading history. Viscoplasticity/viscoelasticity analysis is performed using Zapas model and by comparing creep, creep compliance and pure viscoelasticity curves. The results show that the reinforcement of 15 wt% GNP have the most significant effect on the time-dependent behavior, reducing the strain by more than 50%. The creep compliance curves show that nano-reinforced HDPE behaves nonlinearly viscoelastically even at very low stresses. In addition to demonstrating the effect of nano-reinforcement, the discussion of the results concludes that the influence of loading history can be quite significant and should not be neglected in the design and evaluation of material behavior.  相似文献   

4.
In this study, poly(methyl methacrylate) (PMMA)/graphene nanoplatelets (GNPs) conductive composite films with different morphologies were fabricated from the same constituent materials using four fabrication techniques, solution casting (SC), SC followed by hot pressing (SCP), melt mixing followed by SC (MSC), and melt mixing followed by hot pressing (MP). Morphologies of dispersed GNPs and electrical properties in both in-plane and perpendicular direction were investigated and compared systematically. The corresponding percolation thresholds (Φc) of the composites varied from 0.42 ± 0.13 vol% to 3.26 ± 0.48 vol%. The conductivities varied up to two orders of magnitude and decreased in the sequence of SC > MSC > SCP > MP. These variations were explained in terms of GNPs size, GNPs orientation, distribution and dispersion state of fillers. The contribution of the above factors in each procedure were discerned individually, the results were discussed and compared with other experimental studies and simulations as well.  相似文献   

5.
An exhaustive study on a nanocomposite–poly(methyl methacrylate) matrix material as a supercapacitor is presented. The study includes morphological, structural, and electrochemical characterization. Different electrolytes were used, for which both pseudocapacitance (for reduced graphene oxide) and electric double‐layer capacitance (for functionalized graphene) were observed. An optimum nanocomposite weight percentage was found (2%), and the best performance with highest capacitance (30.4 F/g) was seen for the electrolyte including the smallest anions (OH?), being among the best values for similar systems, that is, a nanocomposite/nonconductive polymer matrix. In addition, a model is presented that explains the underlying electron transport mechanism. The results are promising for the construction of supercapacitors based on novel nanocomposite–poly(methyl methacrylate) matrix materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46685  相似文献   

6.
A series of graphene nanosheets‐filled poly(methyl methacrylate) nanocomposites (GNS/PMMA) is successfully prepared by an in situ fast polymerization method with graphene weight fractions from 0.1 to 2.0 wt %. In situ polymerization is effective in well dispersing of GNS in matrixes and suitable for both low and high content of GNS. The synthesis processes of polymer composites could be simplified and fast by using industrial grade graphene. The GNS fillers are found to disperse homogeneously in the PMMA matrix. The maximum electrical conductivity of the composites achieves 0.57 S m?1, with an extremely low percolation threshold of 0.3 wt %. The electrical conductivities are further predicted by percolation theory and found to agree well with the experimental results. The results indicate that the microstructures, thermal, electrical, and mechanical properties of PMMA polymer are significantly improved by adding a low amount of graphene nanosheets. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43423.  相似文献   

7.
The effect of graphene oxide (GO) flake size on thermal properties of GO/poly(methyl methacrylate) (GO/PMMA) composites prepared via in situ polymerization was investigated. Two styles of GO sheets were synthesized from different sizes of graphite powders by modified Hummers' method and GO/PMMA composites with GO of different sizes were prepared via in situ polymerization. Transmission electron microscopy verified that GO sheets produced from large graphite powders was obviously larger than that from small graphite powders. The similar number of layers and disorder degree of two types of GO sheets were proved by X‐ray diffraction and Raman, respectively. X‐ray diffraction and scanning electron microscopy results of GO/composites proved the homogenous dispersion of both two types of GO sheets in polymer matrix. Dynamic mechanical analysis and thermogravimetric analysis results showed that large GO sheets exhibit better improvement than small GO sheets in thermal properties of the composites. Compared with neat PMMA, the glass transition temperature and decomposition temperature of the composites with large GO sheets (0.20 wt %) were increased by 15.9 and 25.9 °C, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46290.  相似文献   

8.
Poly(methyl methacrylate) (PMMA) composites containing raw or purified single‐walled carbon nanotubes (SWCNTs) are prepared by in situ polymerization and solution processing. The SWCNTs are purified by centrifugation in a Pluronic surfactant, which consists of polyethyleneoxide and polypropyleneoxide blocks. Both the effects of SWCNT purity and non‐covalent functionalization with Pluronic are evaluated. Electrical conductivity of PMMA increases by 7 orders of magnitude upon the integration of raw or purified SWCNTs. The best electrical properties are measured for composites made of purified SWCNTs and prepared by in situ polymerization. Strains at fracture of the SWCNT/PMMA composites are nearly identical to those of the neat matrix. A certain decrease in the work to fracture is measured, particularly for composites containing purified SWCNTs (?31.6%). Fractography and Raman maps indicate that SWCNT dispersion in the PMMA matrix improves upon the direct addition of Pluronic, while dispersion becomes more difficult in the case of purified SWCNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41547.  相似文献   

9.
The graphene nanofiller (2 wt%) was dispersed in poly(methyl methacrylate) by in situ polymerization method. The optimum high frequency (microwave) absorption was evaluated at X-band due to changes in the scattering parameters (determined by using a vector network analyzer). The slight improvement has been attained in gamma attenuation coefficient of the polymer nanocomposite by using gamma transmission technique. The addition of graphene nanoplatelets (2 wt%) resulted in a thermal improvement from 196.73 to 243.00°C (with 5% weight loss) in TGA analysis. The graphene nanoplatelets provided an optimum decrease in scattering of the microwaves due to the elimination of the defects and the prevention of the agglomeration of the graphene nanoplates. The improvement of microwave absorption (between 8 and 12 GHz) suggested that the nanocomposite was a suitable candidate as a microwave absorbing material. This multipurpose nanocomposite has provided thermal stability and it has ensured the optimum gamma-ray and microwave absorption depending on the development of the structural properties. The development of these physical characteristics has enabled to improve the electrical conductivity as a result of the progress in the structural properties.  相似文献   

10.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

11.
In this article, we report the combined effects of poly(ethylene glycol) (PEG) and/or graphene oxides (GOs) on the crystallization behavior of poly(l ‐lactide) (PLLA) under different crystallization conditions, such as nonisothermal crystallization, isothermal crystallization, and annealing‐induced cold crystallization. Differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized optical microscopy were used to study the crystallization kinetics and crystallinity to illustrate the effects of PEG and/or GOs on the crystallization behavior of PLLA. The results show that PEG functioned as a plasticizer and improved the chain mobility of /PLLA during crystallization and the GOs acted as efficient nucleation agents and accelerated the crystallization rate. Finally, both PEG and GOs improved the crystallization ability of PLLA. Importantly, the simultaneous addition of PEG and GOs led to a synergistic effect on the crystallization behavior of PLLA under all conditions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3498–3508, 2013  相似文献   

12.
A simple approach was employed to synthesize silver nanoparticle (Ag NP) reinforced reduced graphene oxide–poly(amidoamine) (Ag‐r‐RGO–PAMAM) nanocomposites. The structural changes of the nanocomposites with the PAMAM and Ag NPs were confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, Raman spectroscopy, and scanning electron microscopy. In addition, the performance was characterized with thermogravimetric and electrical conductivity instruments. The results indicate that the Ag NPs are well dispersed in fine size on the surface of the RGO–PAMAM composites, which results in an increase of at least 38% in thermostability and a certain enhancement in electrical conductivity. It is worth noting that the electrical conductivity of the nanocomposites was approximately 5.88 S cm?1, which was higher than that of RGO–PAMAM, and increases with the rising content of silver nanoparticles. Meanwhile, the Ag‐r‐RGO–PAMAM nanocomposites still maintain a favorable dispersion in organic solvents. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45172.  相似文献   

13.
In this study, nanocomposites of polypropylene (PP) with various loadings of multi‐wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP‐MWCNT and PP‐GnP. Melt mixing on a twin‐screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted‐light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo‐mechanical properties for higher GnP loadings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42793.  相似文献   

14.
Poly (methyl methacrylate) modification by colemanite (CMT) addition has ensured beta shielding improvement. This study has connected with space environmental utilization with Kibo Japanese Experiment Module on International Space Station at low earth orbit. Space environment experiment was performed by using Kibo Experiment Handrail Attachment Mechanism–ExHAM. The changes in beta transmission of the composite were examined (by Sr-90 radioisotope) before and after space environmental utilization and details on beta penetration capacity was examined to protect the equipment (used in aviation and aerospace industries) from space radiation. Beta attenuation variations have indicated composite densification with beta attenuation enhancement after CMT addition.  相似文献   

15.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   

16.
Graphene oxide (GO)‐based nanohybrids were designed for small interfering RNA (siRNA) delivery for their high water dispensability, good biocompatibility, easily tunable surface functionalization, and particular optical properties. In this study, novel nanohybrids based on GO were fabricated. Methoxypoly(ethylene glycol) (mPEG) was covalently conjugated to GO via amide bonds. Then, poly(2‐dimethyl aminoethyl methacrylate) (PDMAEMA), which was synthesized via reversible addition–fragmentation chain transfer polymerization (RAFT) with 2‐(dodecyl thiocarbonothioyl thio)‐2‐methyl propionic acid (DTM) as the RAFT agent, was attached onto GO via physical interaction between DTM and GO. Compared with Lipofectamine 2000, the novel mPEG–GO/PDMAEMA nanohybrids showed comparable gene transfection efficiency and a low cytotoxicity. Moreover, the mPEG–GO/PDMAEMA nanohybrids showed enhanced optical properties compared to the original GO because of the presence of mPEG and PDMAEMA. Our work encouraged further exploration of the novel nanovector for combined photothermal and siRNA delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43303.  相似文献   

17.
In this work, the electrical surface conductivity enhancement of injection‐molded multiwalled carbon nanotube (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposite by using CO2 laser processing was studied. Variable input factors are considered as MWCNT concentration (in three levels 0.5, 1, and 1.5 wt %), the laser feed angle with the flow direction (in five levels 0°, 30°, 45°, 75°, and 90°), and the cavity machining method that were produced by electrodischarge machining and computer numerical control milling with finishing process. The studies show that the irradiation of laser and utilization of covering gas could enhance the CNT–CNT contacts and the surface electrical conductivity. The morphology of laser‐irradiated surface by using scanning electron microscope certified that the conductive network generated from CNT–CNT contacts can transfer the electrical current. The findings clearly show that the laser feed angle with the flow direction influenced the electrical conductivity. The maximum conductivity (~ 5.310 × 10?4 S) was observed at 75°. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42671.  相似文献   

18.
Atmospheric plasma treatment (APT) was used to surface‐activate graphite nanoplatelets (GnP) as well as highly graphitic P100 fibers used to manufacture composites. X‐ray photoelectron spectroscopy showed an increase in the O/C ratio of the treated surfaces when using either CO or O2 as the active gas, whereas CO exhibited less damage to the treated reinforcement carbon material. APT of P100 fibers resulted in a 75% increase in composite tensile strength when compared to composites using untreated fibers. Surface treatment of GnPs also resulted in GnP/epoxy composites with significantly higher glass transition temperatures (Tg's) and 50% higher flexural strengths than those with no surface treatment because of stronger particle‐to‐resin coupling, which was also evidenced by the fracture surfaces. The effect of GnP loading concentration and plasma treatment duration was also evaluated on the tensile strength of fiber‐reinforced composites. The addition of untreated GnP filler resulted in a decrease in strength up to the 1% loading. However, higher loading conditions resulted in a 20% improvement because of GnP orientation effects. Fracture surfaces suggest that the fibers provided a mechanism for the GnPs to orient themselves parallel to the fiber axis, developing an oriented matrix microstructure that contributes to added crack deflection. Incorporating surface‐treated GnPs in these composites resulted in tensile strengths that were as high as 50% stronger than the untreated systems for all loading conditions. Increased GnP‐to‐matrix bonding as well as enhanced orientation of the GnPs resulted in multifunctional composites with improved mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39994.  相似文献   

19.
An effective strategy to increase the properties of poly (lactic acid) (PLA) is the addition of carbon nanotubes (CNT). In this work, aiming to improve the surface adhesion of PLA and CNT a new compatibilizer agent was prepared by reactive processing, PLA grafted maleic anhydride (PLA-g-MA) using benzoyl peroxide and maleic anhydride. The effectiveness of the PLA-g-MA as a compatibilizer agent was verified for PLA/PLA-g-MA/CNT nanocomposites. PLA and PLA-g-MA samples were characterized by Fourier transform infrared spectroscopy (FT-IR) to confirm the grafting reaction of maleic anhydride on PLA chains and by rheological analysis to prove the changes in the matrix PLA after the graphitization reaction. Thermal (differential scanning calorimetry and thermogravimetric analysis), mechanical tests (Izod impact strength and tensile test), and morphological characterization were used to verify the effect of the compatibilizer agent. The preparation of PLA-g-MA by reactive extrusion processing proved satisfactory and the nanocomposites presented good thermal and mechanical properties. The addition of the PLA-g-MA also contributed to the greater distribution of CNT and can be used as an alternative for the production of PLA/CNT nanocomposites.  相似文献   

20.
Graphene quantum dots (GQDs) reinforced poly(vinyl alcohol) (PVA)/polypyrrole (WPPy) nanocomposite films with various GQDs loadings were synthesized using the versatile solvent casting method. The structural and morphological properties of PVA/WPPy/GQDs nanocomposite films were investigated by employing Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The thermogravimetric analysis revealed enhanced thermal stability of synthesized nanocomposites while enhanced dielectric properties were also observed. The maximum dielectric constant value for PVA/WPPy/GQDs nanocomposite films was observed to be ε = 6,311.85 (50 Hz, 150°C). The electromagnetic interference (EMI) shielding effectiveness (SE) of nanocomposite films was determined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency region. The EMI SE was found to be increased from 0.8 dB for the pure PVA film to 9.8 dB for the PVA/WPPy/GQDs nanocomposite film containing 10 wt% GQDs loading. The enhanced EMI shielding efficiency of nanocomposite films has resulted from the homogenous dispersion of GQDs in PVA/WPPy blend nanocomposites. Thus, the prepared nanocomposites are envisioned to utilize as a lightweight, flexible, and low-cost material for EMI shielding applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号