首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, much attention has been given to the development of specialty polymers from useful materials. In this context, amphiphilic block copolymers were prepared by atom transfer radical polymerization (ATRP) of N‐phenylmaleimide (N‐PhMI) or styrene using a poly(2‐hydroxyethylmethacrylate)‐Cl macroinitiator/CuBr/bipyridine initiating system. The macroinitiator P(HEMA)‐Cl was directly prepared in toluene by reverse ATRP using BPO/FeCl3 6 H2O/PPh3 as initiating system. The microstructure of the block copolymers were characterized using FTIR, 1H‐NMR, 13C‐NMR spectroscopic techniques and scanning electron microscopy (SEM). The thermal behavior was studied by differential scanning calorimetry (DSC), and thermogravimetry (TG). The theoretical number average molecular weight (Mn,th) was calculated from the feed capacity. The microphotographs of the film's surfaces show that the film's top surfaces were generally smooth. The TDT of the block copolymer P(HEMA)80b‐P(N‐PhMI)20 and P(HEMA)90b‐P(St)10 of about 290°C was also lower than that found for the macroi′nitiator poly(HEMA)‐Cl. The block copolymers exhibited only one Tg before thermal decomposition, which could be attributed to the low molar content of the N‐PhMI or St blocks respectively. This result also indicates that the phase behavior of the copolymers is predominately determined by the HEMA block. The curves reveal that the polymers show phase transition behavior of amorphous polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
With the increased awareness of avoiding residue metals, the field of organocatalysts is attracting more attention. Aliphatic tertiary amines, such as triethylamine (TEA), N, N, N, N‐tetramethylethylenediamine (TMEDA) and 1,1,4,7,7‐pentamethyldiethylenetriamine (PMDTA), have low boiling points which allow their easy elimination after a chemical reaction. Here, we used these aliphatic tertiary amines to catalyze ring‐opening polymerizations (ROPs) of trimethylene carbonate (TMC). In the presence of benzyl alcohol, the catalytic activities of the tertiary amines were in the order of TEA < TMEDA < PMDTA. Correlation between the molecular weight of polycarbonates and monomer conversions was linear, suggesting the polymerization was controlled. The polymerization pathway was presumed to follow an alcohol‐activated mechanism according to the end‐group fidelity determined using 1H NMR spectroscopy. The ROP of TMC was also successfully initiated by PEO99‐PPO65‐PEO99 (F127) under the catalysis of the tertiary amines, producing well‐defined PTMCn‐F127‐PTMCn copolymers with narrow dispersity ( ca 1.2) and with thermosensitive properties in aqueous solution. Furthermore, copolymerizations of TMC with acryloyl‐containing cyclic carbonate were catalyzed by the tertiary amines in the presence of F127. No crosslinking reactions were detected. Our results demonstrate that the aliphatic tertiary amines have the potential to catalyze TMC homo‐ or copolymerization featuring controllable structure and composition under mild conditions. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
The hydrophobic drug Lamotrigine (LTG) shows low bioavailability after oral administration. Work has been performed to improve the aqueous solubility of LTG using the micelles of amphiphilic block copolymers. Polyethylene oxide- polypropylene oxide- polyethylene oxide triblock copolymers (PEO–PPO–PEO), known as Pluronic®, have been the subject of current interest due to the versatile structural possibilities of varying PEO/PPO ratios. Incorporation of LTG in the aqueous micellar solutions of Pluronic® F127 was investigated using UV–visible spectroscopy. The shapes and size of the micelles with and without LTG have been ascertained using dynamic light scattering and small angle neutron scattering experiments. Results show increase in the Pluronic® micellar size with hard sphere radius with the incorporation of LTG. The effect of hydrophilic polymers (PEG1500 and F68) on the LTG-incorporated Pluronic® F127 micelles was also studied and found inefficient for enhancement of the solubility of LTG. Solid forms of LTG-incorporated Pluronic® F127 micelles with and without hydrophilic polymers, coded as LPMs, were successfully prepared through the thin-film hydration method. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and thermogravimetric analysis have been used to ensure the compatibility of the LTG with Pluronic® F127 micelles in prepared LPMs. All the LPMs showed good incorporation efficiency, loading capacity and the sustained release profile of LTG. Results showed no specific improvement with the addition of hydrophilic polymers in the studied concentration range.  相似文献   

4.
Copolymerization of methyl acrylate (MA) with 1‐octene (1‐Oct) was conducted in the presence of free radical initiator, 2,2′‐azobis(2‐methylpropionitrile) (AIBN) using heterogeneous Lewis acid, acidic alumina. The polymers obtained were transparent and highly viscous liquids. The copolymer composition calculated from 1H NMR showed alkene incorporation in the range of 10–61%. The monomodal nature of chromatographic curves corresponding to the molecular weight distribution in gel permeation chromatography (GPC) further confirmed that the polymers obtained are true copolymers. The number–average molecular weights (Mn) of the copolymers were in the range of 1.1 × 104–1.6 × 104 with polydispersity index of 1.75–2.29. The effects of varying the acidic alumina amount, time of polymerization, and monomer infeed on the incorporation of 1‐Oct in the polymer chain were studied. Increased 1‐Oct infeed led to its higher inclusion in the copolymer chain as elucidated by NMR. DEPT‐135 NMR spectral analysis was used to explicate the nature of arrangement of monomer sequences in the copolymer chain. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Well defined block‐graft copolymers of cyclohexanone‐formaldehyde resin (CFR) and methylmethacrylate (MMA) were prepared via atom transfer radical polymerization (ATRP). In the first step, cyclohexanone formaldehyde resin (CFR) containing hydroxyl groups were modified with 2‐bromopropionyl bromide. Resulting multifunctional macroinitiator was used in the ATRP of MMA using copper bromide (CuBr) and N,N,N′,N″,N″‐pentamethyl‐diethylenetriamine (PMDETA) as catalyst system at 90°C. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (1H‐NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular weight measurement. Molecular weight distributions of the CFR graft copolymers were measured by gel permeation chromatography (GPC). Mn values up to 19,000 associated with narrow molecular weight distributions (polydispersity index (PDI) < 1.6) were obtained with conversions up to 49%. Coating properties of synthesized graft copolymers such as adhesion and gloss values were measured. They exhibited good adhesion properties on Plexiglas substrate. The thermal behaviors of all polymers were conducted using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Three different structures were synthesized via solution free radical polymerization. Polyacrylamides hydrophobically modified with small amounts of two different NN-dialkylacrylamides [N,N-dihexylacrylamide (DHAM) and N,N-dioctylacrylamide (DOAM)] and two different N-alkylacrylamides [N-dodecylacrylamide (DAM) and N-hexadecylacrylamide (HDAM)] have been synthesized using two linear hydrophobic initiators with 12 (ACVA12) and 16 (ACVA16) carbon atoms and two di-substituted hydrophobic initiator with two chains of 6 (ACVAdi6) and 8 (ACVAdi8) carbon atoms derived from 4′4-azobis(4-cyanopentanoic acid) (ACVA). The polymers obtained were telechelic, multisticker and combined. The initiators, monomers and polymers synthesized were characterized by 1H NMR and light scattering (LS). The rheological properties of these three different associative polymers were investigated using steady-state experiments. The effect of location and structure (linear or di-substituted) of the hydrophobic groups upon the viscosity of the polymer in solution was studied.  相似文献   

8.
Poly(vinyl alcohol) (PVAL) and vinyl acetate‐vinyl alcohol copolymers (VAVAL) were esterified with 3,5‐dinitrobenzoyl chloride using the cycled urea N,N′‐dimethylpropyleneurea (1,3‐dimethyl‐3,4,5,6‐tetrahydro‐2(1H)‐pyrimidinone) (DMPU) as the solvent. Vinyl alcohol‐vinyl‐3,5‐dinitrobenzoate copolymers (VALVDNB) and vinyl acetate‐vinyl‐3,5‐dinitrobenzoate copolymers (VAVDNB) were obtained. High degrees of esterification were obtained when PVAL was esterified (86%). The degree of transformation was determined by 1H‐NMR as well as by chemical analysis, and the structure of the resulting polymers by means of IR spectroscopy and 1H‐ and 13C‐NMR. The microstructure of PVA, PVAL, VAVAL copolymers and VALVDNB copolymers were determined from 1H‐ and 13C‐NMR techniques. The sequence distributions for VAVAL copolymers prepared by base‐catalyzed transesterification of PVA were blocky, while the distributions were close to random for VALVDNB copolymers obtained by esterification of PVAL. Thermal properties were studied by DSC. The Tg values of VAVAL, VALVDNB, and VAVDNB copolymers as a function of copolymer compositions were determined. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Polyitaconimide and copolymers of itaconimide were transformed to macromolecules having diamido pendent groups via an aminolysis reaction. The polymers obtained were cast into films, which were then graft copolymerized with acrylamide (AAM) using ceric ion as an initiator. Radical homopolymerization and copolymerization of N-4-methylphenylitaconimide with methyl acrylate or ethyl acrylate were carried out at 60°C in benzene; high molecular weight polymer and copolymers (M?n = 104–105) were obtained. The resulting polymer and copolymers were reacted with n-butylamine in order to produce polymers possessing a pendent 4-tolylcarbamoyl group (4-CH3C6H4NHCO-), which can significantly promote the acrylamide (AAM) graft copolymerization initiated with ceric ion. Transparent films of the polymers were graft copolymerized with AAM in the presence of ceric ion at 45°C. The formation of graft polymers was verified by water absorption percentage, XPS and SEM.  相似文献   

10.
Macromonomer initiators behave as macro cross‐linkers, macro initiators, and macromonomers to obtain branched and cross‐linked block/graft copolymers. A series of new macromonomer initiators for atom transfer radical polymerization (MIM‐ATRP) based on polyethylene glycol (Mn = 495D, 2203D, and 4203D) (PEG) were synthesized by the reaction of the hydroxyl end of mono‐methacryloyl polyethylene glycol with 2‐bromo propanoyl chloride, leading to methacryloyl polyethylene glycol 2‐bromo propanoyl ester. Poly (ethylene glycol) functionalized with methacrylate at one end was reacted with 2‐bromopropionyl chloride to form a macromonomeric initiator for ATRP. ATRP was found to be a more controllable polymerization method than conventional free radical polymerization in view of fewer cross‐linked polymers and highly branched polymers produced from macromonomer initiators as well. In another scenario, ATRP of N‐isopropylacrylamide (NIPAM) was initiated by MIM‐ATRP to obtain PEG‐b‐PNIPAM branched block/graft copolymers. Thermal analysis, FTIR, 1H NMR, TEM, and SEM techniques were used in the characterization of the products. They had a thermo‐responsive character and exhibited volume phase transition at ~ 36°C. A plasticizer effect of PEG in graft copolymers was also observed, indicating a lower glass transition temperature than that of pure PNIPAM. Homo and copolymerization kinetics were also evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Well‐defined ABA type block copolymers of acetophenone formaldehyde resin (AFR) and methyl methacrylate (MMA) were synthesized via atom transfer radical polymerization. In the first step, acetophenone formaldehyde resin containing hydroxyl groups was modified with 2‐bromopropionyl bromide. Resulting difunctional macroinitiator was used in the ATRP of MMA using copper bromide (CuBr)/N,N,N,N″,N″‐pentamethyl‐diethylenetriamine (PMDETA) as the catalyst system at 90°C. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (1H‐NMR) spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy, and molecular weight measurement. Gel permeation chromatography (GPC) was used to study the molecular weight distributions of the AFR block copolymers. Mn up to 24,000 associated with narrow molecular weight distributions (PDI < 1.5) were obtained with conversions up to 79%. Coating properties of obtained block copolymers such as adhesion and reflectance values were investigated. They showed good adhesion properties on Plexiglass substrates. Reflectance values increased as the resin content of polymer increased. The thermal properties of all polymers were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All block copolymers showed higher thermal stability than their precursor AFR resin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A series of hydrolysis‐improved thermosensitive polyorganophosphazenes with α‐amino‐ω‐methoxy‐poly(ethylene glycol) (AMPEG) and amino acid esters (AAEs) of ‘N,N‐systems’ was synthesized, and their properties were evaluated in comparison with the thermosensitive polyorganophosphazenes with methoxy‐poly(ethylene glycol) (MPEG) and AAEs of ‘O,N‐systems’, by means of 31P NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Most of the present polymers showed a lower critical solution temperature (LCST) in the range 32.0–79.0 °C, depending on the kinds of AAE, length of AMPEG and the mol ratio of the two substituents. These polymers exhibited higher LCSTs and faster degradation rates than the MPEG‐based polymers. The aqueous solution of poly(ethyl glycinate phosphazene)‐graft‐poly(ethylene glycol) [NP(GlyEt)0.94(AMPEG350)1.06]n did not show an LCST, which is presumed to be due to its high hydrophilicity, in contrast to [NP(GlyEt)1.01(MPEG350)0.99]n which showing an LCST at 77.5 °C. On the other hand, the polymers with a high content of AAE or with hydrophobic amino acids such as L ‐aspartic acid and L ‐glutamic acid, have shown a similar LCST to those of the MPEG‐based polymers. The half‐lives (t1/2) for hydrolysis of [NP(AMPEG350)1.06(GlyEt)0.94]n at pH 5, 7.4 and 10 were 9, 16, and 5 days, respectively, which are almost 2.5 to 4 times faster than that of the MPEG‐based polymers. The LCST of the present N,N‐polymers has been shown to be more influenced by salts such as NaCl (‘salting‐out’ effect) and tetrapropylammonium bromide (TPAB) (‘salting‐in’ effect) compared with the ‘O,N‐system’. Such differences of the ‘N,N‐systems’ from the ‘O,N‐systems’ in thermosensitivity, hydrolysis behavior and salt effect seem to be due to the higher hydrophilicity of the amino group in AMPEG. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
Vinylferrocene (M1) has been copolymerized with N-vinylcarbazole (M2) using azobisisobutyronitrile as the initiator. In benzene at 70°C, the reactivity ratios r1 = 0.47 and r2 = 0.20 were obtained. Using an e value of ?1.34 for N-vinylcarbazole, the calculated value e for vinylferrocene is about ?2.8, in general agreement with the large negative e values vinylferrocene exhibits with other monomers which are electron rich. These copolymers were treated with trinitrofluororenone to give copolymers with carbazole–trinitrofluorenone charge–transfer complex sites (type B). The copolymers were oxidized with dichlorodicyanoquinone to give a series of copolymers with both ferrocenium and ferrocene sites in them (type C). In addition, type C copolymers were further treated with trinitrofluorenone to give a class of polymers having ferrocene, ferrocenium and carbazole–trinitrofluorenone charge–transfer sites (type D). Introducing ferrocene and ferrocenium sites into the poly(vinylcarbazole–trinitrofluorenone) polymers resulted in an increase in their conductivity, but the polymers were no longer photoconducting.  相似文献   

14.
The free‐radical‐initiated copolymerization of 2‐(4‐acetylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (AOEMA) and 2‐(4‐benzoylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (BOEMA) with 2‐[(4‐fluorophenyoxy]‐2‐oxoethyl‐2‐methylacrylate (FPEMA) were carried out in 1,4‐dioxane solution at 65°C using 2,2′‐azobisisobutyronitrile as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR and 1H‐ and 13C‐NMR spectral studies. 1H‐NMR analysis was used to determine the molar fractions of AOEMA, BOEMA, and FPEMA in the copolymers. The reactivity ratios of the monomers were determined by the application of Fineman‐Ross and Kelen‐Tudos methods. The analysis of reactivity ratios revealed that BOEMA and AOEMA are less reactive than FPEMA, and copolymers formed are statistically in nature. The molecular weights (M w and M n) and polydispersity index of the polymers were determined using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of FPEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of FPEMA in the copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Hybrid block copolymers find applications in drug delivery, tissue engineering, biomimetics and bioimaging, amongst others, mainly due to their propensity to form phase‐separated microdomains as well as to the aggregation of their polypeptide segments. They not only enhance control over structure at the nanometre scale but also yield materials that can interface with various biosystems for different utilities. α‐Methoxy‐poly(ethylene glycol)‐block‐poly[?‐(benzyloxycarbonyl)‐l ‐lysine] hybrid block copolymers of varying degrees of polymerization, MPEGn‐b‐PLL(Z)m, were synthesized by N‐carboxyanhydride ring‐opening polymerization and characterized using infrared and NMR spectroscopy and gel permeation chromatography. Their secondary structures and bulk conformations were investigated using circular dichroism spectroscopy and wide‐angle X‐ray diffraction, respectively, whereas thermogravimetric analysis (TGA), derivative TGA and differential scanning calorimetry were employed for thermal analyses. The resulting block copolymers exhibited microphase separation and suppressed degrees of crystallinity with increasing l ‐lysine content and adopted α‐helix and β‐sheet secondary structures in aqueous milieu. The copolymers were also more thermally stable than their constituent homopolymers. Interestingly, the effects of the retention of the N?‐benzyloxycarbonyl moiety on polymer properties proved considerable. The hybrid block copolymers herein afforded hierarchical structures of potential utility in the biomedical and pharmaceutical fields. © 2012 Society of Chemical Industry  相似文献   

16.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
2‐Hydroxyethyl methacrylate was copolymerized with acrylamide, N‐vinyl‐2‐pyrrolidone, and n‐butyl methacrylate by free‐radical solution polymerization with α,α′‐azobisisobutyronitrile as an initiator at 70 ± 1°C. The average molecular weights and molar compositions of the resultant copolymers were determined with gel permeation chromatography and 1H‐NMR spectroscopy data, respectively. Diclofenac or 2‐[(2,6‐dichlorophenyl)amino]benzene acetic acid, a nonsteroidal anti‐inflammatory drug, was chemically attached to the copolymers by transesterification reaction in the presence of N,N′‐dicyclohexylcarbodiimide to give macromolecular prodrugs. All the synthesized polymers were characterized with Fourier transform infrared, 1H‐, and 13C‐NMR spectroscopy techniques. The polymer–drug conjugates were hydrolyzed in cellophane member dialysis bags containing aqueous buffered solutions (pH 8) at 37°C, and the hydrolysis solutions were detected by UV spectrophotometer at selected intervals. The results showed that the drug could be released by selective hydrolysis of the ester bond from the side chain of the drug moiety. The release profiles of the drug indicated that the hydrolytic behavior of polymeric prodrugs strongly depends on the hydrophilicity of the polymer. The results suggest that the synthesized copolymers could be useful carriers for the release of diclofenac in controlled‐release systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2403–2409, 2007  相似文献   

18.
Starting from MPEG-NH2, a series of amphiphilic triblock copolymers MPEG-b-PLL-b-PLA were synthesized through PEG-NH2-initiated ring-open polymerization of N ε-benzyloxycarbonyl-L-lysine, followed by acylation coupling between the amino-terminated MPEG-b-PZLL-NH2 and carboxyl-terminal PLA and the deprotection of amines. The block copolymers were characterized by FT-IR, 1H NMR, GPC, DSC and TEM. The copolymer functional groups, molecular and block structures were verified by FT-IR, 1H NMR and DSC, respectively. The GPC results indicate that the chain lengths of each block can be controlled by varying the feed ratios of the monomer and initiator, providing the polymer samples with a narrow molecular weight distribution (M w /M n = 1.10 ~ 1.25). The TEM analysis shows that the triblock polymers can self-assemble into polymeric micelles in aqueous solution with spherical morphology. The cell-cytotoxicity assay indicates that the triblock polymers show no obvious cytotoxicity against Bel7402 human hepatoma cells.  相似文献   

19.
Copolymers (P(PDA/Ar)) of o‐phenylenediamine with aniline (Ar = ANi), 3,4‐ethylenedioxythiophene (Ar = EDOT) and 2,3,5,6‐tetrafluoroaniline (Ar = TFANi) were synthesized via polycondensation initiated by ammonium persulfate. The NH2 group content in the copolymers was determined by analyzing the 1H NMR spectra of the N‐acetylated copolymers. Copolymers crosslinked by viologen (1,1'‐disubstituted 4,4'‐bipyridinium dichloride) were obtained by reaction involving the reactive NH2 groups in the copolymers. The absorption wavelengths of solutions of the copolymers and the electrochemical oxidation and reduction potentials of cast films of the copolymers were affected by the electrical properties of the Ar unit. © 2016 Society of Chemical Industry  相似文献   

20.
Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (Pluronic F127) was modified by introducing poly(N‐isopropylacrylamide) (PNIPAM) at both the PEO ends, and the pentablock copolymer (PNIPAM41–F127–PNIPAM41, PN41) so prepared was characterized using gel permeation chromatography and 1H NMR spectroscopy. The degree of polymerization of NIPAM blocks at the two ends was 41. The solution behaviour and microstructure of PN41 aggregates in water were examined using UV–visible spectroscopy, micro‐differential scanning calorimetry and small‐angle neutron scattering (SANS) and compared with F127. Two lower critical solution temperatures (LCSTs) were observed for the pentablock copolymer, corresponding to PPO and PNIPAM blocks, respectively. The adsorption of PN41 on thiol‐grafted hydrophobic gold surfaces at various temperatures was investigated using a quartz crystal microbalance. It was found that the adsorption behaviour and mechanism of PN41 were mainly determined by the interactions of the pentablock copolymers with different chain conformations in dilute aqueous solutions at various temperatures. SANS measurements were used to determine the temperature‐dependent structural evolution of polymer micelles in aqueous solution. A NOESY study revealed that above the LSCT of PNIPAM, the interaction of PPO and PNIPAM protons increases and the distance between PPO and PNIPAM decreases. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号