首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen bond rich segmented poly(urethane-urea) was synthesized from methylene diphenylisocyanate (MDI) and three generations of polyurea-malonamide dendrons as hard segment and polycaprolactone diol as soft segment for thin film applications. The prepared polymers were characterized using spectroscopic, microscopic and thermal analyses. The formation of urethane linkage during the prepolymer reaction and the urea linkage between prepolymer and the dendrons is confirmed by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (NMR) spectroscopy. FTIR shows the presence of hydrogen bonding of –NH groups with both urethane carbonyl group from hard segment and the ether group from the soft segment. However, the phase mixing of hard and soft segments decreases with the higher generation dendrons, as evidenced from FTIR. This observation was confirmed by phase images of the atomic force microscopy (AFM). The coating when applied to clean steel substrates via dip coating reveals uniform, dense and essentially defect free morphology. The work demonstrates that the mechanical properties of the hybrid thin films are dependent on the generation of the dendrons and provides a platform for surface engineering with tunable elastic modulus.  相似文献   

2.
Dielectric behaviour of poly(propylene glycol) (PPG) of number‐average molecular weight 2000 g mol?1 and binary mixtures of PPG with water (PPG–W) of various concentrations were carried out in the frequency range 10 MHz to 4 GHz at 25 °C. The dielectric dispersion and absorption curves related to the orientational motion of these molecules in the binary mixtures are described by a single relaxation time using Debye's model. The values of static dielectric constant εo, high frequency limiting dielectric constant ε, and dielectric relaxation time τo were determined for PPG and PPG–W mixtures. The values of the dielectric parameters were used to explore the nature of homogeneous and heterogeneous dynamic networks formed through hydrogen bonding in the binary mixtures of PPG and water molecules with concentration variation. The dielectric studies of PPG molecules were also carried out in the same frequency range at four temperatures, namely 25, 35, 45 and 55 °C. The temperature‐dependent relaxation times were used to evaluate the thermodynamical parameters for the dielectric relaxation processes. The dielectric relaxation free energy of activation ΔFτ for PPG molecules was found in the range ~4.5 to 4.7 kcal mol?1, which corresponds to the activation energy needed for the breakage of hydrogen bonds. Furthermore, the large negative value of the entropy ΔSτ of PPG molecules confirms that the configuration involved in dipolar orientation has an activated state, which is more ordered than in the normal state. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
A new diol with azoaromatic pendant was prepared by N-phenyl-4-amido-3,4-dichloromaleimide with 2-mercaptoethanol in the presence of NaOH, and used to obtain photosensible poly(urethane-urea) varnish. A poly(urethane-urea) varnish bearing azobenzene chromophores, based on a poly(ethylene adipate)diol (average molecular weight—2000), 4,4′-dibenzyldiisocyanate, diethylene glycol, trimethylolpropane, and afore-mentioned diol, were prepared and characterized. The polymers were characterized by FTIR spectroscopy, thermal analysis (DMA, DSC, and TGA), and the photochromic behavior by UV irradiation of thin films was discussed.  相似文献   

4.
Polyurethane (PU) films were prepared from different types of poly(ε‐caprolactone) glycols and hexamethylene diisocyanate without using any other ingredients such as solvent, catalyst, or chain extender. Polymers were stabilized by crosslinking formed as allophanate and/or biuret linkages during the curing process. The effects of different components on the product properties such as chemical structure, microphase segregation, mechanical strength, thermo‐mechanical, thermal properties, and surface hydrophilicities were investigated by FTIR‐ATR, atomic force microscope, mechanical tester, dynamic mechanical analyses, thermogravimetric analyzer, differential scanning calorimetry, and contact angle measurements. Phase separation of hard and soft segments significantly varied depending on the type and molecular weight of diol and triol. Films containing urethane‐urea bonds displayed the maximum phase separation and the highest mechanical strength. Polyols having higher molecular weight increased hydrophilicity while urea bonds caused a reverse effect resulted by bidentate hydrogen bonds. Results showed PUs with various properties can be synthesized via environmentally friendly process without using any solvent or catalyst. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39758.  相似文献   

5.
This work investigates the characteristics of the thermal degradation of poly(ether urethane) (E‐PU) and poly(siloxane urethane) (S‐PU) copolymers by thermogravimetric analysis (TGA) and thermogravimetric analysis/Fourier transform infrared spectroscopy (TG–FTIR). The stage of initial degradation for E‐PU was demonstrated as a urethane‐B segment consisting of 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol. Moreover, the urethane‐B segment in the copolymers had the lowest temperature of degradation (ca. 200°C). The degradation of E‐PU was determined by TGA and TG–FTIR analyses and had three stages including seven steps. Although the soft segment of S‐PU possessed the thermal stability of polydimethylsiloxane (PDMS), the unstable urethane‐B segment existed in S‐PU. Therefore, the initial degradation of S‐PU appeared around 210°C. The four stages of degradation of S‐PU involved eight steps, as revealed by TG–FTIR, which identified the main decomposition products: CO2, tetrahydrofuran, and siloxane decomposition products. The imide group with high thermal stability was to replace the urethane‐B segment of S‐PU, which had the lowest thermal stability herein. The poly(siloxane urethane imide) (I‐PU) copolymer around 285°C exhibited a high initial temperature of degradation, and the initial degradation occurred at the urethane‐S segment consisting of MDI and PDMS. The degradation of I‐PU was similar to that of S‐PU and had four stages including six steps. Moreover, the degradation region of the imide group between 468 and 625°C was merged into the degradation stage of the siloxane decomposed products. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

7.
The goal of this work was to investigate a possible way of crosslinking polymer chains and the potential formation of intramolecular hydrogen bonds in thermosensitive poly(N‐isopropylacrylamide‐co‐2‐hydroxypropyl methacrylate) (p(NIPAM‐HPMet)) hydrogels obtained by radical polymerization. The chemical structure of the synthesized hydrogels was investigated by Fourier transform infrared (FTIR) spectroscopy and XRD. The FTIR spectrum confirmed the presence of hydrogen bonds formed between the chains in the copolymer. XRD analysis confirmed the amorphous ? crystalline structure of the copolymer. A three‐glass transition and two melting temperatures were detected by DSC. It was found that the addition of HPMet increased the glass transition and melting temperatures of the p(NIPAM‐HPMet) copolymer. The swelling transport mechanism of p(NIPAM‐HPMet) changed from non‐Fickian at 20 °C to case III or zero‐order time‐independent kinetics characterized by a linear mass uptake with time with increasing temperature at 40 °C. © 2013 Society of Chemical Industry  相似文献   

8.
Dielectric relaxation study of binary mixtures of poly(vinyl pyrrolidone) (PVP) (Mw = 40 000 g mol?1) and poly(ethylene glycol)s (PEGs) (Mn = 200, 400 and 600 g mol?1) with concentration variation was carried out in dilute solutions of benzene at 10.1 GHz and 35 °C. The average relaxation time τo, corresponding to segmental motion τ1 and group rotations τ2 was determined for PVP–PEGs mixtures. A comparison of these mixtures relaxation times was made with the relaxation times of PEGs in benzene solvent. The evaluated τo values of PVP–PEGs mixtures in benzene solution are assigned to the reorientation of PEG molecules. It has been observed that the τo value of PVP–PEG200 mixtures increases with increasing concentration of PVP but their values are small in comparison with the τo value of PEG200 molecules. In the case of PVP–PEG400 and PVP–PEG600 mixtures, the evaluated values of τo are greater than the corresponding τo values of PEG400 and PEG600 molecules in benzene solvent. The variation in τo values in these systems has been discussed by considering the stretching effect in the PEGs molecular chains in PVP–PEGs mixtures in benzene solutions. The high value of distribution parameter α (≈0.4 to 0.7) suggests that in these mixtures there is a large contribution of segmental motion and group rotations to the relaxation processes. The nature of the formation of hydrogen‐bonded PVP–PEG complex heterogeneous network due to hydrogen bonding between carbonyl groups of PVP monomer units and terminal hydroxyl groups of PEGs is discussed. Furthermore, the elongation behaviour of PVP–PEG complex networks in benzene solvent and the molecular dynamics in the mixture due to breaking and reforming of hydrogen bonds has been explored by comparing the evaluated relaxation times and the Kirkwood correlation factor of pure PEG molecules for their possible use in drug control release systems. The relaxation times of these mixtures are independent of their viscosity, but the elongation of the mixture network is influenced by the PEG chain length and the number of hydroxyl groups in comparison with the number of carbonyl groups in the mixtures. Copyright © 2003 Society of Chemical Industry  相似文献   

9.
In this work, four aliphatic chain extenders, hexanediol (HDO), hexane diamine (HDA), cystamine (CY), and cystine dimethyl ester (CDE), were chosen to synthesize four kinds of polyurethane and poly(urethane-urea)s (PUs), respectively. HDO extended polyurethanes, HDA extended poly(urethane-urea), CY extended poly(urethane-urea), and CDE extended poly(urethane-urea) were denoted as OPU, APU, CPU, and SPU, respectively. The effect of chain extender type on microphase structure and performance of four PUs was investigated. Our research showed that mechanical strength increased in the following order: OPU < SPU < CPU < APU, and self-healing performance increased in the opposite direction. This result is attributed to the increasing degree of microphase separation: OPU < SPU < CPU < APU. The optimal sample SPU has not only excellent mechanical properties (tensile strength of 27.1 MPa and elongation at break of 397.7%), but also exhibits superior self-healing performance (self-healing efficiencies of 95.3% and 93.5% based on tensile strength and elongation at break). The moderate degree of microphase separation between the soft segments and the hard segments, the introduction of disulfide bonds and low degree of hydrogen bonding are responsible for preparing a polyurethane or poly(urethane-urea) system with high mechanical strength and excellent self-healing performance simultaneously. This work provides useful information for us to develop self-healing polyurethane or poly(urethane-urea) materials in the future.  相似文献   

10.
Aliphatic hyperbranched poly(urethane-urea)s with different weight percentages of branch generating moiety were synthesized by a one pot A2 + BC2 approach. Isophorone diisocyanate was used as the A2 type monomer, while a tri-functional dihydroxyamine compound synthesized from ?-caprolactam and diethanol amine acted as the BC2 monomer. Evidence supporting the hyperbranched structure of the synthesized poly(urethane-urea) was obtained from 1H NMR spectra. FTIR study confirmed the nature and extent of hydrogen bonding present in this novel macromolecule. A Gaussian band fitting procedure of the IR band at amide-I region showed that the extent of hydrogen bonding increases with the increase of weight percentage of the tri-functional compound. The tensile strength, elongation at break, impact resistance, scratch hardness and gloss followed an increasing trend with the same. The thermal degradation of the hyperbranched poly(urethane-urea) was found to be dependent on the weight percentage of the BC2 type moiety. The kinetics of thermal degradation studied by the Ozawa method showed that the activation energy required for thermal degradation of hyperbranched polymer is higher than its linear polyurethane analog. The synthesized polymer was found to be biodegradable by Pseudomonas aeruginosa bacteria. The study showed superiority of the hyperbranched structure over the linear one. Thus the results indicated the potential usage of the studied hyperbranched poly(urethane-urea) as an advanced surface coating material.  相似文献   

11.
A conjugated aromatic polyazomethine (PAZ) with triphenylamine (TPA) unit in the main chain was obtained by high temperature solution polycondensation of diformyltriphenylamine with o-dianisidine (Fast blue B). A major feature of the PAZ containing TPA unit in the main chain is their complete solubility in comparison with PAZ obtained from terephthaldicarboxaldehyde and o-dianisidine (abbreviated hereinafter as PAZ1). Both polymers were analyzed by thermogravimetric analysis and FTIR spectroscopy. UV–vis absorption, X-ray diffraction (X-ray) and Atomic Force Microscopy (AFM) techniques were used to probe the optical properties and morphology of the thin films of the PAZ prepared by spin-coating technique on the glass and quartz substrate. Thickness of the PAZ thin layer on the glass and quartz substrate were determined by ellipsometer at the range 150–220 nm. The optical band gap value (E g) of the thin films PAZ was detected at 2.45 eV. The current–voltage (IV) characteristic was measured to confirm semiconductor nature of the PAZ.  相似文献   

12.
States of water absorbed in water-borne urethane/epoxy coatings   总被引:1,自引:0,他引:1  
The water absorption properties of water-borne urethane/epoxy coatings are studied using differential scanning calorimetry (DSC) and attenuated total reflectance Fourier transform IR spectroscopy (ATR FTIR) to estimate the methods of interaction between the water and coating. DSC and ATR FTIR are used to categorize water into states based unique and easily identifiable differences in DSC and ATR FTIR measurements. DSC states (Strong, Weak 1, Weak 2, and Free) and ATR FITR states (S0, S1, and S2) appear to correspond to the relative strength of the interaction and the degree of hydrogen bonding between the water and the polymer network, respectively. The dynamics and relative population of each state are estimated with the most populous states being Strong and S1 in urethane, and Strong and S2 in epoxy. Finally six active functional groups within the coating appear to form strong hydrogen bonds with water, and one functional group appears to form weak dipole bonds.  相似文献   

13.
A series of amine‐terminated polyaniline oligomer (OPA)‐based conducting poly(urea‐urethane) thermoplastic elastomers (PUUs) was synthesized by two‐stage solution polymerization and characterized by FTIR. Various percentages of OPA were introduced into PUUs as chain extenders to form hard segments of PUUs with urea‐linkages. Spectroscopic and differential scanning calorimetry, as well as dynamic mechanical analysis, were conducted to elucidate the interaction and degree of miscibility between hard and soft segments, which were related to the stress–strain properties of PUUs. The hydrogen bonding index (HBI) measured by FTIR was employed to show the degree of interchain hydrogen bonding. Copolymer films with higher OPA content exhibit higher HBI and the degree of miscibility is significantly improved. The resultant conducting copolymers have higher tensile strength, higher Young's modulus, and lower elongation at break, because of the long rigid structure of OPA and the increase in the number of hydrogen bonds among the copolymers blocks. Incorporating OPA in PUUs increases the mass of the residue at temperatures over 600°C, according to thermogravimetric analysis. The conductivity of PUUs is found to range from 0.83 S/cm for neat OPA to 6.11 × 10?5 S/cm for PUUs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3803–3810, 2007  相似文献   

14.
A series of new poly(urethane urea) is synthesized via a two-step poly-addition process from polyether, 1,6-hexamethylene diisocyanate, 2,4-diamino-6-phenyl-1,3,5-triazine and different crosslinkers: glycerin or castor oil. The hard to soft segment ratio (OHpolyol/NCO/NH2chain extender) was varied systematically from 1/2/1 to 1/4/3. Poly(tetramethylene glycol) of molecular weight 1,400 was used as the soft segment. The structural behavioral characterization of these polymers was performed through FTIR spectroscopy, thermogravimetric analysis, dynamic mechanical and thermal analysis, stress–strain measurements, and water contact angle measurements. The resulting linear polyurethane urea elastomers exhibit good mechanical properties with breaking strains of 300–890% and tensile strengths of 8–13.5 MPa. Thermogravimetric analysis indicated that the thermal degradation of poly(urethane urea) started at about 280–300 °C, higher than the degradation temperature of conventional polyurethane. The improvement of properties was influenced by the hard segment content and the nature of the crosslinker, but most of all by the structure and amount of the urea introduced through 2,4-diamino-6-phenyl-1,3,5-triazine into the polymer backbone chain.  相似文献   

15.
Hong Tan 《Polymer》2004,45(5):1647-1657
It has been well established that polyurethanes exhibit a two-phase micro-structure due to the thermodynamic incompatibility between the soft segments and hard segments. In this work, we reported the effect of fluorinated side chain attached on hard segment on the phase separation and surface topography of polyurethanes. Two sets of fluorinated polyurethanes, namely, poly(ether urethane)s and poly(carbonate urethane)s containing various amounts of chain extender of fluorinated side chains, were investigated by DSC, XPS, DMA, AFM and FTIR. It was found that the phase separation in both bulk and surface increases in fluorinated poly(carbonate urethane)s and the phase mixing increases in fluorinated poly(ether urethane)s, with increasing amounts of fluorinated side chain. The increased degree of hydrogen bonding between hard segments and soft segments was observed by FTIR for fluorinated poly(ether urethane), which is believed to result in the enhanced phase mixing, and the enhanced association of domains with long-range order (hydrogen bonding) between hard segments was evident for fluorinated poly(carbonate urethane)s, which may correspond to the enhanced phase separation. The result is new and provides direct connection between surface topography and bulk phase separation of polyurethanes.  相似文献   

16.
Crosslinking reaction of hydroxyl‐terminated polybutadiene (HTPB)/isophorone di‐isocyanate (IPDI) was monitored by infrared spectroscopy, dynamic mechanical analysis (DMA), swelling measurements, and by relaxation time (T2) measurements obtained by low‐field NMR technique. Chemical reaction monitored by FTIR shows that urethane bonds were predominantly formed throughout the whole reaction period while DMA and swelling became only effective once the three‐dimensional network was formed. NMR results allow differentiating between relaxation‐processes associated with different fractions of the reactants in the mixture prior to the network formation. The most important finding in this study is that two of the relaxation processes were found to decline whereas a new fraction with a short relaxation time which emerged specifically at an early stage of reaction and progressed along with advancement of the reaction. All results pointed out to a change in the mixture behavior around 30 h of crosslinking reaction at 60°C, reflecting an important restriction in molecules diffusion and mobilities which were attributed to the gel point formation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
With the aim of developing dielectric polymers containing CN groups with strong dipole moment, alternating and statistical copolymers of the cyano monomers vinylidene cyanide (VCN), acrylonitrile and methacrylonitrile with methyl α‐acetoxyacrylate (MAA) were synthesized and characterized. The copolymer's composition and microstructure were analysed by NMR spectroscopy, SEC and elemental analysis. The reactivity ratios calculated from the Qe Alfrey–Price parameters for these copolymers indicated the alternating and statistical structures confirmed by NMR analysis. The copolymers have glass transition temperatures Tg in the range 83–146 °C and are stable up to 230 °C. The thermal stability of the copolymers depends on the nature of the cyano monomers. Their molecular dynamics were investigated by dielectric relaxation spectroscopy. We revealed a weak relaxation β at sub‐Tg temperature for poly(VCN‐co‐MAA) usually originating from molecular motions that are restricted to the scale of a few bond lengths. Strong α‐relaxation processes occurred above Tg for these copolymers. This primary relaxation was associated with cooperative movements of the polar groups (CN) at the time of mobility of the principal chains. The activation energy of the α‐relaxation process was also calculated. The values of the dielectric increment Δε for these copolymers were determined by Cole–Cole plots and indicated that the copolymers exhibit interesting dielectric properties compared with similar cyano materials. The polarity–permittivity relationship was also established. © 2012 Society of Chemical Industry  相似文献   

18.
Blends made up of castor oil‐based polyurethane (PU) and poly(o‐methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV‐Vis‐NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV‐Vis‐NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10?3 S/cm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Two series of poly(ether urethane)s and one series of poly(ester urethane)s were synthesized, containing, respectively, poly(oxytetramethylene) diol (PTMO) of M n = 1000 and 2000 and poly(ε‐caprolactone) diol of M n = 2000 as soft segments. In each series the same hard segment, i.e., 4,4′‐(ethane‐1,2‐diyl)bis(benzenethiohexanol)/hexane‐1,6‐diyl diisocyanate, with different content (~ 14–72 wt %) was used. The polymers were prepared by a one‐step melt polymerization in the presence of dibutyltin dilaurate as a catalyst, at the molar ratio of NCO/OH = 1 (in the case of the polymers from PTMO of M n = 1000 also at 1.05). For all polymers structures (by FTIR and X‐ray diffraction analysis) and physicochemical, thermal (by differential scanning calorimetry and thermogravimetric analysis), and tensile properties as well as Shore A/D hardness were determined. The resulting polymers were thermoplastic materials with partially crystalline structures (except the polymer with the highest content of PTMO of M n = 2000). It was found that the poly(ether urethane)s showed lower crystallinity, glass‐transition temperature (Tg), and hardness as well as better thermal stability than the poly(ester urethane)s. Poly(ether urethane)s also exhibited higher tensile strength (up to 23.5 MPa vs. 20.3 MPa) and elongation at break (up to ~ 1950% vs. 1200%) in comparison with the corresponding poly(ester urethane)s. Among the poly(ether urethane)s an increase in soft‐segment length was accompanied by an increase in thermal stability, tensile strength, and elongation at break, as well as a decrease in Tg, crystallinity, and hardness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Surface degradation of implanted poly(ether urethane)s was studied quantitatively with a micro-ATR–FTIR technique. Substantial degradation was observed particularly in the soft segment at the α-carbon adjacent to the ether linkage. The degradation caused changes in the concentration profiles of the soft-segment groups in the depth direction, and the affected depth was up to 10 microns after implantation for 10 weeks. Inhibition of degradation by antioxidants indicated the oxidative nature of degradation. An in vivo poly(ether urethane) degradation mechanism was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号