首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以丁腈羟和聚醚二醇、甲苯二异氰酸酯及扩链剂为原料,加入自由基引发剂双二五和化学交联剂N,N'-马来酰亚胺间苯撑(HAV-2),制备了邻接交联型聚氨酯脲弹性体(PUU).研究结果表明,随着HAV-2用量的增加,交联PUU弹性体的高温力学性能保持率逐渐提高,弹性体由热塑性转变为热固性,不再有软化点出现,表现出较好的热性能.  相似文献   

2.
A new diol with azoaromatic pendant was prepared by N-phenyl-4-amido-3,4-dichloromaleimide with 2-mercaptoethanol in the presence of NaOH, and used to obtain photosensible poly(urethane-urea) varnish. A poly(urethane-urea) varnish bearing azobenzene chromophores, based on a poly(ethylene adipate)diol (average molecular weight—2000), 4,4′-dibenzyldiisocyanate, diethylene glycol, trimethylolpropane, and afore-mentioned diol, were prepared and characterized. The polymers were characterized by FTIR spectroscopy, thermal analysis (DMA, DSC, and TGA), and the photochromic behavior by UV irradiation of thin films was discussed.  相似文献   

3.
A series of transparent waterborne poly(urethane-urea) (PUU) films and nanocomposite films were prepared using isocyanate excess (5–50 mol% excess relative to the hydroxyl groups) and omitting the common chain-extension step in the acetone method of the preparation. The surplus isocyanate groups were converted into urea and eventually biuret linkages via the reaction with water during the last phase inversion step. Nanocomposites were prepared by the direct mixing of the PUU nanoparticles in water with aqueous nanosilica or montmorillonite powder followed by slow water evaporation. Variable urea/biuret content is responsible for substantially different tensile properties; the neat organic films show elongation-at-break values of 100%–1120%, tensile strength values of 0.07–22.1 MPa, and energy-to-break of 0.1–85 mJ × mm−3. All of the materials can be potentially used as soft-to-hard topcoats, depending on the specific demands. The most promising materials are films prepared at 30 and particularly 40 mol% isocyanate excess.  相似文献   

4.
Polyether(urethane-urea) foams (PEUU) with varying urea contents and different polyether segments (PPO and PPO-co-PEO (93/7 w/w)) were compacted to transparent solid plaques via compression molding. The thermal, mechanical and elastic properties of the compacted PEUU materials were studied. With increasing urea content, the shear modulus was increased, while the glass transition temperature (Tg) remained low and unaffected. The Tg's of PEEU's with PPO segments were, however, lower than with PPO-co-PEO segments, indicating more mixing of urea segments with PPO-co-PEO. The flow temperatures of both PEUU's were high (∼300 °C) for all compositions. The compression sets, tensile sets and hysteresis energy of the PEUU's were low and increased with urea content. The use of PPO-co-PEO segments resulted in PEEU's with higher compression sets and tensile sets and also more hysteresis. The recovery of the PEUU's showed two relaxation regimes: a fast (elastic) recovery and a slower (viscoelastic) recovery. The recovery of these PEUU's is almost complete giving time.  相似文献   

5.
Natural rubber (NR) is a renewable bio‐based polymer, while poly(butylene succinate) (PBS) belongs to the family of biodegradable renewable polymers. In this article, novel polyurethanes (PUs) were prepared using hydroxyl telechelic natural rubber (HTNR) and hydroxyl telechelic poly(butylene succinate) (HTPBS) as soft segments, and using toluene‐2,4‐diisocyanate (TDI) and 1,4‐butanediol (BDO) as hard segment. HTPBS oligomers of = 2000 and 3500 g mol?1 were synthesized by bulk polycondensation of succinic acid (SA) with BDO. The polyurethane materials were obtained by casting process after solvent evaporation. The influence of the hard segment content and the molecular weight of HTPBS on the materials’ thermo‐mechanical properties were investigated by means of tensile testing, DSC, TGA, and DMTA. The obtained polyurethanes were amorphous with phase separations between hard and soft segments as well as between HTNR and HTPBS segments, and they exhibited good physical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42943.  相似文献   

6.
Poly(methyl methacrylate) (PMMA) was introduced into poly(vinylidene fluoride) (PVDF) via a solution blending process, and a series of PVDF/PMMA blends were obtained in an effort to reduce the energy loss of pure PVDF. The effects of the composition and thermal treatment on the properties of the polymer blends were carefully studied. The results show that the introduction of PMMA led to a lower crystallinity and a smaller crystal size of PVDF for its dilution effect. As a result, the dielectric constant and energy storage density of the polymer blends were slightly reduced. Meanwhile, the phase transition of the PVDF crystals from the α phase to the β phase happened during the quenching of the blend melt to ice–water; this was also observed in the untreated or annealed blends with PMMA contents over 50 wt %. Compared with the α‐PVDF, the PVDF crystals in the β phase possessed a lower melting temperature, a higher dielectric constant, and a lower dielectric loss. The addition of PMMA reduced the energy loss of PVDF significantly, whereas the energy storage density decreased slightly. The optimized blend film with about 40 wt % PMMA and PVDF in the β phase showed a relative high energy storage density and the lowest energy loss. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Poly(lactide)/poly(methyl methacrylate)/silica (PLA/PMMA/SiO2) composites were fabricated using a twin‐screw extruder. Nanosilica particles were incorporated to improve the toughness of the brittle PLA, and a chain extender reagent (Joncryl ADR 4368S) was used to reduce the hydrolysis of the PLA during fabrication. Highly transparent PLA and PMMA were designated to blend to obtain the miscible and transparent blends. To estimate the performance of the PLA/PMMA/SiO2 composites, a series of measurements was conducted, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and isothermal crystallization behavior determination. A chain extender increases the ultimate tensile strength of the PLA/PMMA/SiO2 composites by ~43%, and both a chain extender and nanosilica particles increase Young's modulus and Izod impact strength of the composites. Including 0.5 wt % nanosilica particles increase the elongation at break and Izod impact strength by ~287 and 163%, respectively, compared with those of the neat PLA. On account of the mechanical performances, the optimal blending ratio may be between PLA/PMMA/SiO2 (90/10) and PLA/PMMA/SiO2 (80/20). The total light transmittance of the PLA/PMMA/SiO2 composites reaches as high as 91%, indicating a high miscible PLA/PMMA blend. The haze value of the PLA/PMMA/SiO2 composites is less than 35%. Incorporating nanosilica particles can increase the crystallization sites and crystallinities of the PLA/PMMA/SiO2 composites with a simultaneous decrease of the spherulite dimension. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42378.  相似文献   

8.
To investigate the effects of polymer chemistry and topology on physical properties and bacterial adhesion, various hydrogels composed of short hydrophilic [poly(ethylene oxide) (PEO)] and hydrophobic blocks were synthesized by polycondensation reactions. Differential scanning calorimetry and X‐ray diffraction analysis confirmed that all of the hydrogels were strongly phase‐separated due to incompatibility between PEO and hydrophobic blocks such as poly(tetramethylene oxide) (PTMO) and poly(dimethyl siloxane) (PDMS). The crystallization of PEO in the hydrogels was enhanced by the incorporation of longer PEO chains, the adoption of PDMS as a hydrophobic block, and the grafting of monomethoxy poly(ethylene oxide) (MPEO). Compared to Pellethane, the control polymer, the hydrogels exhibited higher Young's moduli and elongations at break, which was attributed to the crystalline domains of PEO and the flexible characteristics of the hydrophobic blocks. The mechanical properties of the hydrogels, however, significantly deteriorated when they were hydrated in distilled water; this was primarily ascribed to the disappearance of PEO crystallity. The water capacity of hydrogels at 37°C in phosphate‐buffered saline (PBS) (pH = 7.4) was dominantly dependant on PEO content, which also influenced the thermonegative swelling behavior. From the bacterial adhesion tests, it was evident that both S. epidermidis and E. coli adhered to Pellethane much greater than to the hydrogels, regardless of the preadsorption of albumin. Better resistance to bacterial adhesion was observed in hydrogels with longer PEO chains, with PTMO as a hydrophobic block, and with MPEO grafts. The least bacterial adhesion for both species was achieved on MPEO2k–PTMO, a hydrogel with MPEO grafts. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1505–1514, 2003  相似文献   

9.
A nanocomposite was fabricated using poly(vinylidene fluoride) (PVDF) as matrix and poly(p-chloromethyl styrene) (PCMS) grafted with high dielectric constant copper phthalocyanine oligomer (CuPc) (PCMS-g-CuPc) as filler. Transmission electron microscopic morphologies reveal that the PCMS-g-CuPc particle size of ca. 80 nm in average are dispersed in PVDF matrix, while in PCMS-g-CuPc particles the PCMS acts as “matrix” which contains dispersed CuPc balls with a average size of ca. 25 nm [1/20 of that of CuPc in simple blend of PVDF and CuPc (PVDF/CuPc)]. The nanocomposite with only 15 wt% CuPc can realize a dielectric constant of 325 at 100 Hz, about 7 times larger than that of PVDF/CuPc, and nearly 40-fold enhancement with respect to that of the pure PVDF. The significant enhancement of dielectric response can be attributed to the remarkably strengthened exchange coupling effect as well as the Maxwell-Wagner-Sillars polarization mechanism.  相似文献   

10.
In this paper, we report dielectric permittivity and loss of poly (vinyl chloride) samples that have received three different thermal treatments: (a) as received, (b) quenched from 110°C to 20°C and (c) slow cooled at 5°C/h. There are several observations: first, the secondary (β) loss peak-is not representative of a simple mechanism of transition, in agreement with results of other authors (10), second, in the glass transition zone, there are clearly two peaks (α1 and α2)—α1, is a typical peak of an amorphous glass transition; the second, α2, has possibly a crystalline origin—and, third (and the most interesting fact), there is an increase of the loss tangent in the intermediate zone between α and β peaks showing a new relaxational peak with high activation energy (70 Kcal/mole), in agreement with dynamic mechanical results (6).  相似文献   

11.
The effect of orientation on the low-strain mechanical properties, dielectric relaxation, and thermal expansivity of poly(butylene terephthalate) has been studied. The α relaxation at 50°C (1 Hz), which involves large-scale chain motion in the amorphous regions, is reduced in magnitude and shifted to higher temperature after drawing. In contrast, the localized motions of the carbonyl and glycol groups associated with the β process at ?90°C (1 Hz) is not much affected by orientation. At low temperature, a large difference along and normal to the draw direction is observed for both Young's modulus and thermal expansivity. The anisotropy, however, diminishes with increasing temperature and becomes nearly zero above the α relaxation. This feature can be understood on the basis of the Takayanagi model.  相似文献   

12.
This article reports on the results obtained in an investigation on the application of biodegradable polymeric materials in the agricultural practice of mulching. Particular attention has been devoted to the effect of biobased mulching films generated in situ by low‐pressure spraying of polymeric water dispersions on the various cultivars. In a field trial, the effectiveness of the hydromulching (liquid‐mulching) technique was assessed by the monitoring of the growth and yield of lettuce and corn, which were used as reference plants. Conventional plastic films and straw mulching (SM) were compared with liquid‐mulching treatments based on poly(vinyl alcohol) and natural fillers derived from agroindustrial wastes (sugar cane bagasse, wheat flour, saw dust, and wheat straw). An improvement of the biomass yield of the two selected plants with respect to conventional polyethylene mulching was attained in various liquid‐mulching formulations with positive effects on the maintenance of soil structure. Alternative fluid‐mulching treatments based on biodegradable components were effective in preserving soil aggregates and improving some crop growth parameters. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a biodegradation promoter and gluing component of the natural filler and synthetic polymeric matrix in the composite (22% by weight). The prepared laminates were characterized for their mechanical properties and degradative behavior in simulated soil burial experiments. The fibers type and content in composite impacted mechanical properties. Materials based on PVA and starch with apple wastes and sugarcane bagasse fillers were much harder (Young's Modulus respectively, 57, 171 MPa) than materials prepared with orange wastes (17 Mpa). Respirometric test revealed that soil microbes preferentially used natural polymers and low molecular weight additive as a carbon source compared to biodegradable synthetic polymer. The presence of PVA in formulations had no negative effect on the degradation of lignocellulosic fibers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Random copolymers of methyl methacrylate/n-butyl acrylate with a BA content of 0–50% and M?v = 0.16–4.04 × 106 were synthesized and evaluated as a processing aid (PA) for poly(vinyl chloride) (PVC). Their effects on the processability and properties of PVC were investigated with respect to the composition, molecular weight, and the amount of the copolymer added. It was found that the fusion rate of PVC could be improved (i) by increasing the amount of the copolymer used, (ii) by increasing the butyl acrylate content in the copolymer, and (iii) by lowering the molecular weight of the copolymer. The effect of molecular weight, composition, and amount of copolymer on the ultimate mechanical properties of PVC was investigated. The presence of copolymer did not affect the impact strength. However, the tensile strength and elongation at break were improved, particularly at high temperature (125°C). It was also found that the “plate out” phenomenon of PVC could be significantly reduced in the presence of the processing aid.  相似文献   

15.
A novel hyperbranched poly(phenylene oxide) (HBPPO) modified 2,2′‐bis(4‐cyanatophenyl) isopropylidene (BCE) resin system with significantly reduced curing temperature and outstanding dielectric properties was developed, and the effect of the content of HBPPO on the curing behavior and dielectric properties as well as their origins was thoroughly investigated. Results show that BCE/HBPPO has significantly lower curing temperature than BCE owing to the different curing mechanisms between the two systems, the difference also brings different crosslinked networks and thus dielectric properties. The dielectric properties are frequency and temperature dependence, which are closely related with the content of HBPPO in the BCE/HBPPO system. BCE/2.5 HBPPO and BCE/5 HBPPO resins have lower dielectric constant than BCE resin over the whole frequency range tested, while BCE/10 HBPPO resin exhibits higher dielectric constant than BCE resin in the low frequency range (<104 Hz) at 200°C. At 150°C or higher temperature, the dielectric loss at the frequency lower than 102 Hz becomes sensitive to the content of HBPPO. These phenomena can be attributed to the molecular relaxation. Two relaxation processes (α‐ and β‐relaxation processes) are observed. The β‐relaxation process shifts toward higher frequency with the increase of temperature because of the polymer structure and chain flexibility; the α‐relaxation process appears at high temperature resulting from the chain‐mobility effects. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Four series of star-like poly (ethylene oxide) have been prepared by incorporating the cross-linkers with tri-reactive cores, tetra-reactive cores, penta-reactive cores, and hexa-reactive cores, respectively. Chemical characterization was performed by Fourier transform infrared spectroscopy. The thermal properties were evaluated by differential scanning calorimetry. The average chain-to-chain distance in polymers was investigated by wide-angle X-ray diffraction. The effect of incorporating the cross-linkers with various reactive cores and multi-arms on the gas transport properties was reported. The relationship between the gas transport properties and physical properties was also discussed. Some of these polymers exhibit outstanding permeation–separation performance for CO2/N2, exceeding the CO2/N2 Robeson upper-bound line.  相似文献   

17.
In this work, four aliphatic chain extenders, hexanediol (HDO), hexane diamine (HDA), cystamine (CY), and cystine dimethyl ester (CDE), were chosen to synthesize four kinds of polyurethane and poly(urethane-urea)s (PUs), respectively. HDO extended polyurethanes, HDA extended poly(urethane-urea), CY extended poly(urethane-urea), and CDE extended poly(urethane-urea) were denoted as OPU, APU, CPU, and SPU, respectively. The effect of chain extender type on microphase structure and performance of four PUs was investigated. Our research showed that mechanical strength increased in the following order: OPU < SPU < CPU < APU, and self-healing performance increased in the opposite direction. This result is attributed to the increasing degree of microphase separation: OPU < SPU < CPU < APU. The optimal sample SPU has not only excellent mechanical properties (tensile strength of 27.1 MPa and elongation at break of 397.7%), but also exhibits superior self-healing performance (self-healing efficiencies of 95.3% and 93.5% based on tensile strength and elongation at break). The moderate degree of microphase separation between the soft segments and the hard segments, the introduction of disulfide bonds and low degree of hydrogen bonding are responsible for preparing a polyurethane or poly(urethane-urea) system with high mechanical strength and excellent self-healing performance simultaneously. This work provides useful information for us to develop self-healing polyurethane or poly(urethane-urea) materials in the future.  相似文献   

18.
A basic understanding of the structure–property relations and how they are influenced by the molecular architecture is imperative for the future development of polymer thin films in a large number of applications including those in the electronics industry. A new study has been illustrated in this work to demonstrate the effect of an aromatic Chlorine–Hydrogen substitution on the structural and dielectric properties of poly-para-xylylene (parylene N) ((–CH2–C6H6–CH2–)n). X?Ray Diffraction (XRD) analysis reveals that the chlorination of the aromatic rings of poly-para-xylylene stabilize the crystalline structure of the materials (α–monoclinic), increases the d-spacing, decreases the crystallinity, and increases the value of the dielectric parameters. Furthermore, the permittivity is increased from 2.68 (PPX N) to 3.1 (PPX C) and the conductivity is increased by two order of magnitude at room temperature at frequency 1 KHz. Fourier Transformation Infrared Spectrometer (FTIR) and Energy Dispersion X-ray (EDX) analyses shows that the different as deposited parylene type are deprived of extrinsic polar bonds who can influenced on the dielectric properties. The increase of the dielectric properties and the changes of the morphologies structure are associated to the change in the intermolecular interaction due to the ClH aromatic substitution of poly-p-xylylene.  相似文献   

19.
The structure, development, morphology, and dielectric relaxation have been investigated in poly(vinyl chloride)–thermoplastic elastomer (copolyester–ether) blends having different compositions. The changes in the intensities of dielectric relaxation peaks for the β and γ processes with respect to blend composition have been found to be associated with corresponding changes in crystalline structure and morphology of the elastomeric component. The critical composition for observing such modification of properties is about 50% of poly(vinyl chloride) above which the blend becomes almost amorphous. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Polymers containing metal oxides of nanoscale dimensions have attracted attention because of their unique properties and new findings concerning technological applications. Polymers containing vanadium pentoxide (V2O5) have attracted our interest in respect of their potential applications in memory and switching devices. Poly(vinyl alcohol) (PVA) containing different concentrations of V2O5 ranging from 0 to 0.5 wt% were prepared. The synthesized PVA/V2O5 composites were cast as self‐standing flexible films. The composites were characterized using X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. An attempt was made to study the relaxation characteristics of PVA/V2O5 samples. The permittivity and dielectric loss were determined as a function of V2O5 concentration. The results show that the optimum concentration is 0.3 wt%. The electrical conductivity and dielectric modulus in the temperature range 303–433 K at various frequencies (10–100 kHz) for the optimum concentration were investigated. XRD and FTIR results show that the addition of V2O5 reduces the crystallinity of PVA due to the interaction of vanadium ions with the OH groups of PVA. The application of the dielectric modulus formulism gives a simple method for evaluating the activation energy of the dielectric relaxation. The frequency dependence of the electrical conductivity follows the Jonscher universal dynamic law. The conductivity in the direct regime is described by the small polaron model. The electrical conductivity and dielectric properties show that Hunt's model is well adapted to PVA/V2O5 films. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号