首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.  相似文献   

2.
A new method for production of nylon nanofibers with antibacterial properties containing silver nanoparticles (nylon nanofibers/Ag NPs) is introduced via in situ synthesis of nano-silver by reduction of silver nitrate in the polymer solution prior to electrospinning. The properties of the electrospinning solutions and the structures of the electrospun fibers were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), UV?Cvis spectrophotometer and reflection spectrophotometer. Further, the antibacterial properties of the nanofibers were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. Interestingly, an antibacterial properties has been found on nylon 6 nanofibers while the nylon nanofibers/Ag NPs showed excellent antibacterial activities against both tested bacteria. The produced nylon nanofibers/Ag NPs can be a good candidate for biomedical applications, water and air filtration.  相似文献   

3.
Electrospun nanofibrous membranes (ENMs) were fabricated based on chitosan/poly(vinyl alcohol) (CS/PVA) with a 70/30 mass ratio containing silver nanoparticles (AgNPs) via the electrospinning method. AgNPs were produced on the surface of CS/PVA nanofibers by adding AgNO3 to a CS/PVA blend solution as a silver rendering component. The presence of AgNPs in the polymer blend solution was detected by UV spectrophotometry. The morphology of nanofibers before and after cross-linking with glutaraldehyde was investigated by the field emission scanning electron microscopy. The formation and size distribution of AgNPs onto the surface of nanofibers were observed by transmission electron microscopy and confirmed by energy dispersing X-ray spectroscopy. As-spun and cross-linked CS/PVA nanofibers revealed a smooth surface with diameters ranging from 58 to 73 nm and 95 to 109 nm, respectively. The effect of AgNP formation on the chemical structure of nanofibers was explored by Fourier transform infrared spectroscopy. Static and dynamic antibacterial filtration efficiencies of CS/PVA ENMs, containing differing amounts of AgNO3, have been tested against Escherichia coli, a gram negative bacterium. The antibacterial assessment results exhibited a significant increase in both static and dynamic antibacterial filtration efficiencies of the prepared CS/PVA ENMs by addition of AgNO3 as a bactericidal agent.  相似文献   

4.
Soy proteins are gaining more and more attention because of its multifunction and biodegradability. Silver nanoparticles (AgNPs) are introduced into the nanofibers to prevent growth of microorganisms over the filter media. In the present study, the multifunctional and antimicrobial nanofibrous membranes were prepared by electrospinning the soy protein isolate (SPI)/polymide‐6 (PA6)‐silver nitrate system followed by ultraviolet reduction. The morphology of SPI/PA6 nanofibrous membranes was characterized by scanning electron microscopy. Antibacterial property of nanofibrous membranes were investigated against Escherichia coli and Bacillus subtilis. The optimized fiber membrane exhibited over 95% filtration efficiency of PM0.3 (particulate matter size less than 0.3 μm). The successful synthesis of SPI/PA6‐AgNPs nanofibrous membranes would make it to be the potential candidate for novel antibacterial and high‐performance air filter. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45766.  相似文献   

5.
Novel nanocomposite films of chitosan/phosphoramide/Ag NPs were prepared containing 1–5% of silver nanoparticles. The Ag NPs were synthesized according to the citrate reduction method. The XRD and SEM analysis of Ag NPs, chitosan (CS), phosphoramide (Ph), CS/Ph, CS/Ag NPs films and the nanocomposite films 1–5 containing CS/Ph/1–5% Ag NPs were investigated. The in vitro antibacterial activities were evaluated against four bacteria including two Gram‐positive Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and two Gram‐negative Escherchia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) bacteria. Results revealed greater antibacterial effects of the films against Gram‐positive bacteria. Also, nanocomposite films containing higher percent of Ag NPs showed more antibacterial activities. POLYM. COMPOS. 36:454–466, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
There is an extensive possibility of improving characteristics of fibers used in hard tissue engineering, being hydrophobic and less osteoconductive, resulting in the dynamic growth of new tissues. The current work focuses on the fabrication of nanofibers incorporated with titanium dioxide (TiO2) ''as osteoconductive'' and silver (Ag) ''as self-healing'' nanoparticles (NPs). The incorporation of AgNO3 by in situ method not only helped to impart the antibacterial activity but also changed the contact angle from 81 ± 03° in the case of pristine nanofibers to 74 ± 03°, 61 ± 03°, 50 ± 08°, and 39 ± 1.1°, in the composite scaffolds containing 0.01, 0.03, 0.05, and 0.07 M of Ag salts. The incubation in simulated body fluid at 37°C to induce mineralization on nanofiber scaffolds indicated Ca and P crystals' formation. The antibacterial activity showed significantly more toxicity toward E. coli (8.3 ± 0.9 mm) than S. aureus (1.2 ± 0.1 mm). Biocompatibility studies using MTT assay on the pre-osteoblasts showed that both TiO2 and Ag NPs present in the nanofibers are non-toxic to the bone-like cells. However, results show that a higher concentration of Ag NPs (i.e., 0.07 M) is toxic to cells growing. Finally, all the results suggest that the nanofiber scaffolds have considerable scope for future bone tissue engineering materials.  相似文献   

7.
Green chemical method could be a promising route to achieve large scale synthesis of nanostructures for biomedical applications. Here, we describe a green chemical synthesis of silver nanoparticles (Ag NPs) on chitosan‐based electrospun nanofibers using Eucalyptus leaf extract. A series of silver salt (AgNO3) amounts were added to a certain composition of chitosan/polyethylene oxide aqueous acetic acid solution. The solutions were then electrospun to obtain nanofibrous mats and then, morphology and size of nanofibers were analyzed by scanning electron microscopy (SEM). Incubation of AgNO3‐containing mats into Eucalyptus leaf extract led to the formation of Ag NP clusters with average diameter of 91 ± 24 nm, depicted by SEM and transmission electron microscopy. Surface enhanced Raman spectroscopy also confirmed formation of Ag NPs on the nanofibers. The mats also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria with bigger inhibition zone for extract‐exposed mats against S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42133.  相似文献   

8.
Herein, a novel technology named coaxial electro-spraying/electrospinning was successfully introduced, which can simultaneously prepare nanofibers and nanoparticles. First, the device contains an outer nozzle and an inner nozzle, which combine electrospinning with electro-spraying technology. Then, the polyamide 6 (PA6) was spun to prepare the nanofibers from the inner nozzle, and the silver nanoparticles (Ag NPs) into the PA6 solution were sprayed to prepare the nanoparticles from the outer nozzle. PA6 nanofibers (NFs)/Ag nanoparticles (NPs) antibacterial composite membranes for the filtration of fine particulate pollutants were successfully prepared using coaxial electro-spraying/electrospinning. The microstructure, physical properties, and antibacterial properties of the composite membrane were investigated. The results show that Ag NPs are successfully loaded in situ onto PA6 NFs of approximately 100 nm to form a three-dimensional (3D) structure. The filtration efficiency of the 3D structured filtration membrane reaches 90.98%, compared to only 12.78% for the melt-blown cloth mask filter material when tested with polystyrene microspheres (PS) of 200 nm. The contact angle of the composite membrane decreased from 145.47° to 44.11°, indicating a significant improvement in the hydrophilicity of the membrane. Furthermore, depositing Ag on the surface fibers resulted in an impressive antibacterial rate of 99.75% against Penicillium.  相似文献   

9.
Bifunctional nanofiber mats consisting of chitosan (CS), poly(vinyl alcohol) (PVA), and silver nanocrystals (Ag NCs) have been fabricated by a facile electrospinning method. The formation and presence of Ag NCs supported on CS/PVA nanofibers are confirmed by ultraviolet‐visible spectroscopy and X‐ray diffraction. The morphology of the samples is characterized by transmission electron microscopy and scanning electron microscopy. The prepared Ag NCs/CS/PVA nanofiber mats show pronounced antibacterial activity against Escherichia coli and excellent filtration property for suspended particulate matter (SPM) particles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46504.  相似文献   

10.
《Ceramics International》2015,41(8):9615-9621
Dairy effluent (DE) is environmentally toxic and needs special attention. Photocatalytic degradation of DE was studied using novel polyurethane (PU)-based membranes. Typically, silver–titanium dioxide nanofibers (AgTiO2 NFs) and silver–titanium dioxide nanoparticles (AgTiO2 NPs) were individually incorporated in PU electrospun nanofibers to overcome the mandatory sophisticated separation of the nanocatalysts, which can create a secondary pollution, after the treatment process. These nanomembranes were characterized in SEM, TEM, XRD and UV studies. The polymeric electrospun nanofibers were smooth and continuous, with an average diameter of about 550 nm, and held their nanofibrous morphology even after more than 2 h of photocatalytic degradation of DE, due to the good stability of PU in the aqueous solutions, which indicates good imprisoning of the functional photocatalysts. The PU–AgTiO2 NPs and PU–AgTiO2 NFs were effective materials for degradation of DE, even after two successive cycles. PU–AgTiO2 NPs and PU–AgTiO2 NFs showed a maximum degradation of 75% and 95%, respectively after 2 h. The significant enhancement of degradation in the PU–Ag–TiO2 NPs and PU–Ag–TiO2 NFs is attributed to the photoactivity of Ag–TiO2 material under visible light irradiation.  相似文献   

11.
The objective of this study was to obtain antibacterial active chitosan/poly(ethylene glycol) diacrylate macromere (CS/PEGM) semi‐IPN hydrogels near a neutral pH level by changing their pore size and morphology. These hydrogels were prepared from CS and PEGM with different molecular weights in the presence of pore‐forming agents, poly (ethylene glycol) (PEG) or sodium bicarbonate (NaHCO3), by using two different initiator system, namely chemical or UV. A combination of CS with PEG or NaHCO3 in the presence of PEGM could be able to create desired pore formation in both initiator systems. The antibacterial activity of hydrogels changed with the molecular weight (g/mol) of PEGM in the order 2000>400>8000. A chemical initiation system was found more suitable than the UV initiation system for antibacterial activity. Hydrogels showing the highest antibacterial activity on Staphylococcus aureus and Escherichia coli have medium or distributed pore size and interconnected pores. Hydrogels prepared with PEGM (Mn: 2000 g/mol) were proposed for antibacterial wound dressing and soft tissue regeneration applications owing to their antibacterial activity and elastic modulus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42707.  相似文献   

12.
To fabricate new smart materials that can deliver both the pharmaceutically active molecules and metal nanoparticles, we have formulated chitosan-based semi-IPN hydrogels and their silver nanocomposites (Ag NCs) along with amoxicillin (AMX). Semi-IPN hydrogels and their Ag NCs were synthesized from chitosan, dimethylamino ethyl methacrylate and 2-hydroxyethyl methacrylate via simple-free radical polymerization method and reducing with NaBH4. The resultant formulations were evaluated for in vitro release of AMX, anti-bacterial studies and DNA cleavage studies. The hydrogels with AMX-derived silver nanoparticles (Ag NPs) show better ability to cleave DNA and anti-microbial activity than individual AMX and Ag NPs.  相似文献   

13.
This work aimed to prepare pH-sensitive and antibacterial drug releasing systems through a completely green route. To achieve this, the gelatin natural biopolymer was crosslinked with citric acid in the presence of Ag nanoparticles (NPs). Interestingly, Ag NPs formation and gelatin crosslinking were simultaneously occurred during annealing of samples without need for any toxic chemicals, which were confirmed by FTIR, UV-vis spectra, SEM and TEM observations. In addition, potential of the citric acid crosslinked-gelatin/Ag nanocomposite hydrogels was successfully explored for drug delivery applications using cefixime as a model drug. It was found that these hydrogels have pH-dependent swelling and drug release behavior with higher drug release at pH 7.4 compared to pH 1.2. Also, an antibacterial effect against the E. coli and S. aureus microorganisms was achieved by incorporation of Ag NPs into hydrogels. These hydrogels can be considered as stimuli responsive materials for oral drug delivery and wound dressing applications.  相似文献   

14.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   

15.
In regenerative medicine, extracellular matrix (ECM)-inspired materials are currently being explored to imitate mechanotransduction pathways and control cell fate. In musculoskeletal tissue regeneration, enhancing mechano-biological signals require biomaterials that are both biocompatible and viscoelastic and can retain water content. Herein, based on these requirements, various polyvinyl alcohol (PVA)-based composite hydrogels, reinforced by polyhydroxy butyrate (PHB) nanofibers, are proposed to differentiate equine adipose-derived stem cells for musculoskeletal regeneration. To study the role of fiber embedding in improving scaffold properties, different nanofiber assemblies, including chopped short ones with random orientation (PVAS), single-layer (PVAL1), and double-layer membranes (PVAL2) are positioned into the PVA matrix. PHB reinforcements negatively affect swelling and positively enhanced phase transition temperatures and crystallinity of PVA hydrogel. According to mechanical analysis results, compositing with PHB nanofibrous layers strengthen the PVA matrix due to some restrictions on PVA chain mobility. Gene expression investigations also reveal that higher matrix stiffness after layering with two PHB membranes (PVAL2) promotes osteogenesis, while the random addition of short-chapped fibers (PVAS) facilitate tenogenic differentiation. As a consequence of the findings, fiber placement is crucial to the mechanical properties of composite hydrogels that ultimately control musculoskeletal differentiation signals through mechanosensing pathways.  相似文献   

16.
Cuprous oxide (Cu2O) nanoparticles have attracted extensive attention because of their excellent optical, catalytic, antibacterial, and antifungal properties and low cost. Nano-Cu2O–poly(ethylene oxide) (PEO)–silk fibroin (SF) composite nanofibrous scaffolds (CNSs) were fabricated through green electrospinning to impart excellent antibacterial properties onto nanofibrous scaffolds. Scanning electron microscopy revealed that the nanofibers became more nonuniform and appeared more and more as beads in the nanofibers with increasing nano-Cu2O concentration, and no obvious morphological changes were observed after 75% EtOH vapor treatment. Transmission electron microscopy and X-ray photoelectron spectroscopy demonstrated that nano-cuprous oxide (nano-Cu2O) was successfully loaded into the PEO–SF nanofibers. Fourier transform infrared–attenuated total reflectance spectroscopy results indicate that nano-Cu2O did not induce SF conformation from random coils to β sheets. The SF conformation converted from random coils to β sheets after 75% EtOH vapor treatment. The results of water contact angle testing and swelling property measurement clarified that nano-Cu2O–PEO–SF CNSs possessed outstanding hydrophilicity. Nano-Cu2O–PEO–SF CNSs exhibited better antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria than PEO–SF nanofibrous scaffolds, and the antibacterial activity increased with increasing nano-Cu2O concentration. Cell viability studies with pig iliac endothelial cells demonstrated that nano-Cu2O–PEO–SF CNSs had no cytotoxicity. Nano-Cu2O–PEO–SF CNSs are expected to be ideal biomimetic antibacterial dressings for wound healing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47730.  相似文献   

17.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

18.
The aim of this study was to develop stable and porous poly(ethylene oxide) (PEO)–polycaprolactone blended and silver nanoparticle (Ag NP) incorporated composite nanofiber scaffolds as antibacterial wound dressings. A facile approach for the in situ synthesis of Ag NPs was explored. In this synthesis method, N,N‐dimethylformamide (DMF) was used as a solvent; it also acted as reducing agent for Ag NP formation. The stabilization of Ag NPs in the fibers was accomplished by PEO, which in turn acted as a reducing agent along with DMF. The successful synthesis of crystalline Ag NPs was confirmed by various characterization techniques. Thermogravimetric analysis, wettability, and surface roughness analysis of the nanofibers were done to examine the suitability of the scaffold for wound dressing. The as‐synthesized composite nanofibers possessed good roughness, wettability, and antibacterial potential against recombinant green fluorescent proteins expressing antibiotic‐resistant Escherichia coli. Thus, the nanofiber scaffold fabricated by this approach could serve as an ideal wound dressing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42473.  相似文献   

19.
In this study, electrospun biocompatible nanofibers with random orientation were prepared by physically blending poly(vinyl alcohol)‐stilbazol quaternized (PVA‐SbQ) with zein in acetic acid solution for wound healing. PVA‐SbQ was used as the foundation polymer as well as crosslinking agent, blended with zein to achieve desirable properties such as improved tensile strength, surface wettability, and in vitro degradable properties. Moreover, vaccarin drug was incorporated in situ into electrospun nanofibrous membranes for cell viability and cell attachment. The addition of vaccarin showed great effects on the morphology of nanofiber and enhanced cell viability and proliferation in comparison with composite nanofibers without drug. The presence of PVA‐SbQ, zein, and vaccarin drug in the nanofibrous membranes exhibited good compatibility, hydrophilicity, and biocompatibility and created a moist environment to have potential application for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42565.  相似文献   

20.
Nanocomposite hydrogels were prepared through a blend solution of poly(lactic acid) and poly(N-isopropylacrylamide)-co-acrylamide via free radical polymerization. Plant extractions were used for the synthesis of Ag nanoparticles to study the antibacterial activity of the hydrogels. Similarly, 5-Fluorouracil drug was loaded through both in situ and ex situ methods to study thecontrolled release profiles. The nanocomposite hydrogels were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Thermo gravimetric analysis - Differential scanning calorimetry (TGA-DSC), X-ray diffractometer, scanning electron microscopy, and transmission electron microscope. The dissolution and the agar diffusion test were performed to evaluate the drug release and antibacterial activity, respectively. The results suggested that the fabricated nanocomposite hydrogels can be used as a promising candidate for dual functions in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号