首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, ionomers were employed to improve the adhesion between 3D printed layers of poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), a commonly used polymer in 3D printing. The printability, rheology, and mechanical properties of PETG were tailored by incorporating poly(ethylene-co-methacrylic acid) neutralized with sodium (EMAA), a soft ionomer. PETG/EMAA polymer blends were prepared by melt extrusion to yield filaments for 3D fused filament fabrication (FFF) printing in different compositions by weight: 70/30, 50/50, and 30/70. The filaments and 3D printed samples were characterized by scanning electron microscopy, rheological and tensile tests. The results revealed that the interaction between PETG and EMAA favored the production of 3D printed samples with enhanced adhesion of layers, ductility, and toughness compared to neat PETG. Increases of 83.5 times in toughness and 86.4 times in ductility were achieved. The blends 30/70 and 50/50 presented the best printability in terms of adhesion between printed layers and mechanical properties.  相似文献   

2.
Bio‐based poly(trimethylene terephthalate) (PTT) and poly(ether esteramide) (PEEA) blends were prepared by melt processing with varying weight ratios (0–20 wt %) of ionomers such as lithium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Li) and sodium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Na). The blends were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light microscopy (PLM), and transmission electron microscopy (TEM). DSC and PLM results showed that EMAA‐Na increased the crystallization rate for PTT significantly, whereas EMAA‐Li did not enhance the crystallization rate at all. Specific interactions between PEEA and ionomers were confirmed by DSC and TEM. Electrostatic performance was also investigated for those PTT blends because PEEA is known as an ion‐conductive polymer. Here, we confirmed that both sodium and lithium ionomers work as a synergist to enhance the static decay performance of PTT/PEEA blends. Morphological study of these ternary blends systems was conducted by TEM. Dispersed ionomer domains were encapsulated by PEEA, which increases the interfacial surface area between PEEA and the PTT matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers to PTT/PEEA blends. This core–shell morphology can be predicted by calculating spreading coefficient for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Transesterification reactions between polyarylate (PAr) and a copolyester (PETG) have been investigated by proton nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry. Blends of PAr and PETG were prepared by melt mixing and solution-casting with weight fractions of PAr in the blends varying from 0.90 to 0.10. The PETG is a copolyester containing ethylene-1,4-cyclohexylene dimethylene terephthalate. From the thermal analysis of the PAr/PETG melt blends, a single glass transition temperature is observed, which indicates a miscibility between the PAr and PETG. The benzene insoluble fraction of the PAr/PETG (50/50) melt blends and solution-cast blends were characterized using NMR and FTIR. The results of NMR and FTIR support the conclusion that transesterification reactions between the PAr and PETG occurred under the melt blending conditions applied.  相似文献   

4.
The effect of a commercial styrene/butadiene/styrene-based compatibilizer (Styroflex) on the tensile and impact properties of ternary blends of poly(acrylonitrile-co-butadiene-co-styrene) (ABS), high impact poly(styrene) (HIPS) and poly(ethylene terephthalate-co-cyclohexanedimethanol terephthalate) (PETG) was investigated. The tensile yield strengths and the moduli of the blends were of similar magnitude as the parent polymers. However, notched Charpy impact properties showed significant deviations with high synergy in ABS/PETG blends and strong antagonism in HIPS/PETG blends. Addition of Styroflex improved the impact properties of all blends containing HIPS and ABS. Dynamic mechanical analysis studies confirm the phase separated nature of ABS/PETG binary blends.  相似文献   

5.
采用转矩流变仪制备了聚苯乙烯/聚对苯二甲酸-乙二醇-1,4-环己烷二甲醇酯(PS/PETG)共混物和PS/改性PETG(PETG-M)共混物。采用旋转流变仪和熔体流动速率测定仪测定了PS、PETG和PETG-M的流变性能;采用扫描电子显微镜观测了共混物的相态结构。结果表明,随着PETG和PETG-M含量的提高,PS/PETG共混物和PS/PETG-M中PETG和PETG-M分散相颗粒平均粒径都增大,分散相颗粒密度都减小,在含量相同的情况下,PETG-M的分散相颗粒平均粒径小于PETG,PETG-M的分散相颗粒密度高于PETG,PETG-M的分散相粒径分布宽度更窄。  相似文献   

6.
Composites of polyethylene and aluminium (PEAL) may be obtained from the recycling of postconsumed Tetra Pak aseptic packaging. The components of the composite are low density polyethylene (LDPE), aluminium and an ethylene‐methacrylic acid random copolymer (EMAA). The presence of metallic filler and a functionalized copolymer, which may act as a compatibilizer, suggests that blending PEAL with other thermoplastic would be a way to obtain reinforced and compatibilized blends from recycled materials. Blends of PEAL and recycled poly(ethylene terephthalate) (PET) were prepared in the compositions of 30, 50, and 70 wt % of PET in a twin‐screw extruder. Blends of PET/LDPE and PET/EMAA were also prepared for comparison. The morphological analysis showed that the PET/PEAL blends present an excellent interfacial adhesion, similar to the PET/EMAA blend. The improvement of adhesion in comparison with the PET/LDPE blend is a result of the interaction between polar groups of PET and EMAA. PET/PEAL blends presented lower elongation at break and impact strength than the other blends whereas Young modulus was higher. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
A methodology for blending foam of poly (lactic acid) (PLA)/poly (ethylene terephthalate glycol-modified) (PETG) was proposed. PLA/PETG blends were prepared through a melt blending method, using multiple functionality epoxide as reactive compatibilizer. The effects of blending ratio and compatibilizer content on the dispersion morphology, molecular structure, mechanical properties, and rheological behavior of PLA/PETG blends were studied. Then PLA/PETG blends were foamed using supercritical CO2 as physical blowing agent, and their porous structure, pore size, as well as pore density were investigated. The results showed that the mechanical properties and rheological parameters such as melt strength and melt elasticity, as well as the porous structure of the foams dispersion morphology of PLA/PETG blends were affected strongly. The melt elasticity of PLA/PETG blends increased with increasing compatibilizer content. Dispersion phase morphology of PLA/PETG blends also had a significant effect on the pore density of all the samples. The results indicated that homogeneous and finer porous morphology of PLA/PETG foams with high expansion ratio could be achieved with a proper content of compatibilizer in the blends.  相似文献   

8.
In the current work, poly(butylene succinate)(PBS)/poly(ethylene glycol-co-cyclohexane-1,4-dimethanolterephthalate) (PETG) blends were first prepared by high-speed extrusion melt processing, and the dependence of the dispersed morphology(phase size) was investigated as function of screw speed. Then, the prepared blends were subjected to a “melt extrusion-uniaxial cold stretching” process to convert the dispersed phase into fibrillar structure, and the diameter change and property enhancement of PBS/PETG blends were further studied. It was found, at fixed ratio of PBS/PETG = 80/20 (wt/wt), the diameters of the PETG was changed from 2.25, 1.29, 1.11, 0.89 μm to 1.13, 0.64, 0.50, 0.38 μm, as increasing the screw speed from 150, 500, 700 rpm to 900 rpm, respectively. In addition, increasing the extrusion speed is favorable not only for smaller but more uniform dispersed phase particles, thus leading to finer microfibrils with narrower diameter distribution after cold stretching. As a result, the yield strength of PBS could be improved from 25.6 to 39.8 MPa for blend obtained via high-speed extrusion and stretching. Our work is important for the preparation of polymer blends with improved property. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47549.  相似文献   

9.
采用熔融共混法制备了马来酸酐(MA)封端聚碳酸亚丙酯(PPC)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)的共混物(PPC-MA/PETG),采用套管上吹法将共混物吹塑成膜.通过差示扫描量热仪(DSC)、热失重分析(TGA)及扫描电子显微镜(SEM)等手段系统地研究了共混物的热、力学性能及形貌.结果表明:PPC-MA/PETG共混物为部分相容体系;MA封端PPC可以提高PPC的热分解温度(T-5%),PETG与PPC-MA共混进一步提高了PPC的热性能;当PETG含量低时,PETG作为岛相分散在PPC基体中,随着含量的增加,共混物将发生"海-岛"结构转变成"海-海"结构;共混物薄膜的力学性能较纯PPC大幅增强,从4.7MPa提高到16.93MPa.PPC-MA与PETG共混可以获得力学性能较好的膜材料,改善PPC材料的缺陷,在包装、生物医用材料等领域具有广阔的应用前景.  相似文献   

10.
Ionic interactions were introduced to styrene–butadiene–styrene (SBS) through blending with ethylene-methacrylic acid copolymer (EMAA) and zinc oxide (ZnO), and a following in situ neutralization reaction between the carboxyl groups of EMAA and ZnO. The resultant SBS/EMAA (60/40 wt %) blends containing zinc carboxylate crosslinks exhibited high modulus and strong long-time relaxation characteristics. With 74% of the carboxyl groups neutralized (zinc cation fraction of 1.7 wt %), the tensile strength of the blends was increased from 14.6 to 16.6 MPa, and the stress at 100% extension was increased from 4.8 to 8.1 MPa. The melting temperature of EMAA was utilized to trigger the shape memory behavior of SBS/EMAA, and the reversible ionic bonds endowed SBS with better shape memory and self-healing performance. The shape-fixing ratio and recovery ratio of SBS were increased from 90.2 and 56.5% up to 93.3 and 84.2%, respectively. When the cut surfaces of SBS/EMAA/Zn samples were brought back into contact and annealed at 100 °C for 1 h, the strength and the elongation at break were recovered by 36 and 21%, respectively. This introduction of ionic interactions through the EMAA-ZnO neutralization reactions imparts new functions to SBS thermoplastic elastomers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48666.  相似文献   

11.
The miscibility window of the 50/50 w/w poly(styrene-co-4-vinylphenyl)-dimethylsilanol/poly(n-butyl methacrylate) (ST-VPDMS/PBMA) blends prepared from toluene was studied and determined to be in the VPDMS composition range of 4 to 18 mole% in the copolymers. The observed miscibility window was to be compared to the range of 9 to 34 mole% found for the blends prepared from methyl ethyl ketone which was capable of competing for hydrogen bonding. The fact that the observed miscibility windows are influenced by the choice of solvents illustrates that an equilibrium state of polymer mixing is not always attained in solvent casting films and that caution needs to be exercised in studying polymer miscibility when solvent cast films are used.  相似文献   

12.
Thermally sprayed polymer coatings have been used as protection against corrosion and wear. The aim of this study was to produce coated steel with a blend film with low‐velocity combustion thermal spraying and a fusion technique and to evaluate its chemical degradation with infrared and ultraviolet–visible spectroscopy. The substrate used was carbon steel coated with recycled poly(ethylene terephthalate) (PET), an ethylene/methacrylic acid copolymer (EMAA), or PET–EMAA blends. The degradation of the material was evaluated with an ultraviolet condensation–weathering test and a salt‐spray test. Measurements of hardness and adhesion were carried out. The tribological properties of the polymeric films were evaluated with a pin‐on‐disc test. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Compatibilization of blends of linear low‐density polyethylene (LLDPE)–poly(methyl methacrylate) (PMMA) and LLDPE–copolymer of methyl methacrylate (MMA) and 4‐vinylpyridine (poly(MMA‐co‐4VP) with poly(ethylene‐co‐methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE–PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4‐vinyl pyridine units are introduced into PMMA chains, or poly(MMA‐co‐4VP) is used as the polar polymer. In LLDPE–poly(MMA‐co‐4VP)–EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA‐co‐4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N1s binding energy in X‐ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore‐labeled LLDPE chains and chromophore‐labeled poly(MMA‐co‐4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA‐co‐4VP). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 967–973, 1999  相似文献   

14.
Thermal, rheological, morphological, and mechanical properties of a thermotropic liquid crystalline polymer, TLCP (copolyester Vectra A-950 from Hoechst), blended with a polycarbonate (PC), a polyethylene glycol terephthalate (PETG), and a blend of PC and PETG (20/80) are presented and discussed. Important supercooling effects are observed for the TLCP. For the blends the glass transition temperature of the matrix is shown to decrease slightly, suggesting partial miscibility of the components. A finer dispersion is observed for the TLCP/PC blends, at least for TLCP concentrations lower than 20%, for which the mechanical properties are quite good. For higher TLCP concentrations, as well as for the other two matrices, the mechanical properties follow more or less the mixing rule, and the morphology of the blends suggests poor adhesion. We were unable to obtain fibrillar structures by extruding the blends through a capillary rheometer; in the TLCP/PC blends, the TLCP domains were too small, and for the other blends the extrudates had not enough melt strength.  相似文献   

15.
The rheology and development of the texture of immiscible polymer blends based on poly(ethylene terephthalate) (PET) and nylon 6,6 at composition ratios of 75/25, 50/50, and 25/75 w/w PET/nylon 6,6 were studied. The blends were prepared by mixing in an extruder and by dry blending and mixing between cone-and-plate fixtures in a nitrogen atmosphere. The rheology of these blends was found to be a function of both polymer degradation and the two-phase morphology. An accelerated degradation rate in air was observed for the 75/25 and 50/50 w/w PET/nylon 6,6 blends relative to the neat polymers while the blend at a weight ratio of 25/75 w/w PET/nylon 6,6 displayed a rate of degradation similar to that of the neat polymers. The values of the steady shear viscosity (η), |η*| storage modulus (G′), and steady-state first normal stress difference (N1) for melt-blended 75/25 and 50/50 w/w PET/nylon 6,6 samples were lower than those of the neat polymers and were determined to be a consequence of the higher rate of degradation of these blends during extrusion relative to that of the neat polymers. The role played by the two-phase nature on the blends was observed for all samples prepared by dry blending and mixing in cone-and-plate fixtures under a nitrogen atmosphere and for the melt-blended 25/75 w/w PET/nylon 6,6 blend. The two-phase nature of the dry-blended samples and the extruded 25/75 w/w PET/nylon 6,6 sample resulted in values of |η*|, η, G′, and N1 which were higher than those of the neat polymers. Transient behavior observed for the blends using stepwise changes of shear rate was found to superimpose when plotted in reduced form, indicating that at rates lower than the longest relaxation time of the neat polymers there was no intrinsic time constant associated with the deformation of the interface in the blends. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Co‐continuous amorphous copolyester (PETG)/polyoxymethylene (POM) (50/50 wt%/wt%) blends were prepared using a twin screw extruder followed compression molding. Two types of thermoplastic polyurethane (TPU) (i.e., polyester‐based and polyether‐based) were used to compatibilize the blends system. The thermal properties were characterized by using differential scanning calorimetry (DSC). The mechanical properties of the co‐continuous PETG/POM blends were studies through flexural and single‐edge notch tensile test (SEN‐T). The SEN‐T test was performed at three different testing speeds; 1, 100, and 500 mm/min. Scanning electron microscope (SEM) was used to access the fracture surface morphology. The flexural strength of the PETG/POM blends was decreased in the presence of TPU. This was attributed to the elastomeric nature of the TPU. The compatibilizing effects of TPU on the PETG/POM blends were proven by moderate improvement in the fracture toughness and confirmed by the SEM observation. The SEN‐T fractured surface of the compatibilized blends showed gross matrix shear yielding as compared to the uncompatibilized system. The Kc values of the PETG/POM blends decreased as the testing speed increased. The optimum toughening effect was observed in PETG/POM blends compatibilized with polyether‐based TPU at testing speed of 100 mm/min. The polyether‐based TPU is a more efficient compatibilizer, because the amount required is one‐half that of the polyester‐based counterpart to achieve the same Kc value. This was attributed to the elastomeric nature of the polyether‐based TPU. The softer nature of polyether‐based TPU could provide better toughening effect than the polyester‐based TPU, which is relatively harder in nature. POLYM. ENG. SCI., 45:710–719, 2005. © 2005 Society of Plastics Engineers  相似文献   

17.
Rheological and electrical properties were studied on blends of a PETG polyester (cyclohexanedimethanol-modified polyethylene terephthalate) and an inherently static dissipative high molecular weight polyether based copolymer, hereafter referred to as ESD polymer. Several important electrical properties and flow phenomena have been observed. First of all, the PETG blends could result in ESD protected material with excellent performance and a minimal effect on physical properties and melt processability. The rheological characterization reveals that the ESD polymer has a high melt viscosity even at a temperature more than 150 degrees above its melting temperature and that it exhibits pseudoplastic behavior. The PETG melt shows a near constant dynamic viscosity at a low frequency region. The viscosity of the ESD polymer and PETG melt exhibits a cross over at the temperature range from 200–220°C; the PETG melt is the lower viscosity component at low shear rate and the ESD polymer is the lower viscosity component at high shear rate. This appears to result in the existence of a small composition difference in the thickness direction of an injection-molded ESD polymer/PETG part, with a greater fraction of the ESD polymer component in the skin section. This, in turn, could enhance the surface conductivity of the skin region of an injection-molded part. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The multilamellar barrier materials based on the blends of high‐density polyethylene (HDPE) and copolyester (PETG) were prepared via melt extrusion, and poly(ethylene‐co‐acrylic acid) (EAA) as a compatibilizer was incorporated into the blends. A systematic investigation was carried out, with regard to morphology and properties. Scanning electron microscopy observation displayed the laminar morphology for the blends with the whole compositions, and the thinner laminas of the PETG phase formed in the HDPE matrix by incorporating EAA into the blends. In addition, the number and the size of the laminas of the dispersed phases were also dependant on the die temperature and screw speed, respectively. Evaluation of the mechanical properties demonstrated that incorporation of the EAA resulted in an improvement of the mechanical properties. These behaviors are attributed mainly to better adhesion and compatibility between HDPE and PETG, which has been confirmed by thermal analysis and the rheological properties. On the basis of these premises, it is reasonable to suggest that the improved barrier properties of the ternary blends with increasing concentration of the EAA be attributed to both the increase in the number of the laminas of the PETG and the decrease in their thickness, which prohibits the organic solvent molecules from entering into and permeating through the amorphous regions of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3791–3799, 2006  相似文献   

19.
The toughening of polyethylene terephthalate (PET)/amorphous copolyester (PETG) blends using a maleic anhydride grafted mixture (TPEg) of polyethylene‐octene elastomer and a semicrystalline polyolefin plastic (60/40 by weight) was examined. The TPEg was more effective in toughening PETG than PET, although the dispersion qualities of the TPEg particles in PET and PETG matrices were very similar. At the fixed TPEg content of 15 wt %, replacing partial PET by PETG resulted in a sharp brittle‐ductile transition when the PETG content exceeded the PET content. Before the transition, PET/PETG blends were not toughened with the TPEg of 15 wt %, whereas after the transition, the PET/PETG blends with 15 wt % of TPEg, similar to the PETG/TPEg (85/15) binary blend, maintained a super‐tough level. The impact‐fractured surfaces of the PET/PETG/TPEg blends were also evaluated. When PETG content was lower than PET content, the ternary blend showed a brittle feature in its impact‐fractured surface, similar to the PET/TPEg (85/15) binary blend. While PETG content exceeded PET content, however, the impact‐fractured surface of the ternary blend was very similar to that of PETG/TPEg (85/15) binary blend, exhibiting intensive cavitation and massive matrix shear yielding, which were believed to be responsible for the super‐tough level of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 797–805, 2003  相似文献   

20.
Ch Tselios  D Bikiaris  V Maslis  C Panayiotou 《Polymer》1998,39(26):6807-6817
Polypropylene (PP) and low density polyethylene (LDPE) were melt blended in proportions of 75/25, 50/50 and 25/75 w/w, respectively. Poly(propylene-g-maleic anhydride) (PP-g-MA) with 0.8 mol% maleic anhydride content and poly(ethylene-co-vinyl alcohol) (EVAL) with 7.5 mol% vinyl alcohol content were added at a 50/50 w/w proportion as in situ reactive compatibilizers. Four series of compatibilized blends were produced containing 2.5, 5, 10 and 20 wt% compatibilizer in the final blend. The compatibilization reaction was followed by a torque increase during mixing and by FTi.r. spectroscopy. A notable improvement in tensile strength, elongation at break and impact strength was observed for all blends after compatibilization and, in particular, for the blends containing 10 wt% compatibilizer. Scanning electron microscopy (SEM), aided by micro-Raman spectroscopy, was used for investigating the morphology of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号