首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous chitosan–tripolyphosphate beads, prepared by the ionotropic crosslinking and freeze‐drying, were used for the adsorption of Cu(II) ion from aqueous solution. Batch studies, investigating bead adsorption capacity and adsorption isotherm for the Cu(II) ion, indicated that the Cu(II) ion adsorption equilibrium correlated well with Langmuir isotherm model. The maximum capacity for the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, deduced from the use of the Langmuir isotherm equation, was 208.3 mg/g. The kinetics data were analyzed by pseudo‐first, pseudo‐second order kinetic, and intraparticle diffusion models. The experimental data fitted the pseudo‐second order kinetic model well, indicating that chemical sorption is the rate‐limiting step. The negative Gibbs free energy of adsorption indicated a spontaneous adsorption, while the positive enthalpy change indicated an endothermic adsorption process. This study explored the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, and used SEM/EDS, TGA, and XRD to examine the properties of adsorbent. The use of porous chitosan–tripolyphosphate beads to adsorb Cu(II) ion produced better and faster results than were obtained for nonporous chitosan–tripolyphosphate beads. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A novel magnetic adsorbent (EDTA /chitosan/ PMMS) was facilely prepared by reacting chitosan with EDTA anhydride in presence of PEI ‐ coated magnetic microspheres. The as‐synthesized EDTA/ chitosan /PMMS was characterized by XRD, SEM, TGA, FT‐IR , and VSM, and then employed in removal of heavy metals of Pb(II) from aqueous solution. The results of the batch adsorption experiments revealed that the adsorbents had extremely high uptake capacities for Pb(II) in the pH range of 2 to 5.5, and the adsorption kinetics for EDTA/ chitosan /PMMS was consistent with the pseudo – second ‐ order kinetic model. Moreover, its equilibrium data were fitted with the Langmuir isothermal model well, which indicated that the adsorption mechanism was a homogeneous monolayer chemisorptions process. The maximum adsorption capacity of EDTA/ chitosan /PMMS for Pb(II) was found to be 210 mg g ? 1 at pH 4 (30 ° C), and further reuse experiments results suggested that EDTA /chitosan/ PMMS could be a potential recyclable magnetic adsorbent in the practical wastewater treatment. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42384.  相似文献   

3.
Hydrogels were synthesized from hyperbranched polyglycerol (HPG) and acrylic acid through free‐radical polymerization with HPG as the crosslinker. The HPG/poly(acrylic acid) (PAA) hydrogel could absorb cationic dyes in aqueous solutions because of the existence of a porous structure and the large numbers of hydroxyl and carboxylic groups. With methyl violet chosen as a model compound, the HPG/PAA hydrogel reached a maximum adsorption of 394.12 mg/g at a feed concentration of 1 g/L. The highest removal ratio of 98.33% was observed at a feed concentration of 50 mg/L. The effects of the pH, contact time, and feed concentration on the dye adsorption were investigated. The dye adsorption data fit well with the pseudo‐second‐order and Langmuir models. We believe that the HPG/PAA hydrogels could perform well in appropriate applications in the removal of cationic dyes from aqueous solutions because of their high adsorption capacity and environmental friendliness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42951.  相似文献   

4.
The hydrolytic stability of polylactide/poly(methyl methacrylate) (PLA/PMMA) blends prepared using a twin‐screw extrusion process was investigated. The effects of hydrolysis were monitored in neutral and alkaline media at 80 °C by tracking the changes in molecular weight distribution, weight loss, water uptake, and crystallization behavior. The crystallinity of PLA in blends prior to hydrolysis was shown to be largely hindered by the presence of PMMA. However, PLA recrystallized rapidly during hydrolysis. The PMMA in the blends was shown to provide increased hydrolytic and structural stability to the blends. In the neutral medium, the presence of PMMA delayed and reduced the weight loss but did not significantly affect PLA degradation kinetics. On the other hand, in the alkaline medium, the weight loss rate was strongly decreased in presence of PMMA and the kinetics of degradation was shown to be depend on PMMA content. The microstructure of these blends throughout the hydrolysis process was also examined by scanning electron microscopy. A porous structure, with interconnected pores in the 20–50 nm range, was developed due to the selective removal of PLA. Based on these morphological observations, erosion mechanism of PLA/PMMA blends was discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45991.  相似文献   

5.
Renewable poly(amidoamine)/hemicellulose hydrogels were prepared from O‐acetylated galactoglucomannan (AcGGM)‐rich biomass and shown to display a significantly high adsorption capacity for Cu2+, Cd2+, Pb2+, Zn2+, Ni2+, Co2+, and . Two different acrylamido end‐capped poly(amidoamine) oligomers (PAA) were prepared and covalently immobilized onto an in situ formed polysaccharide network via water‐based free radical graft copolymerization and cross‐linking. The synthetic approach was shown to be viable when using a highly purified AcGGM or a crude spruce hydrolysate, an AcGGM and lignin containing biomass fraction as a reactant. Homogeneous reaction mixtures were obtained in both cases with polysaccharide contents up to 20% by weight. Oscillatory shear measurements indicated a predominantly solid‐like behavior of the hydrogels with an increase in shear storage modulus with increasing cross‐link density. The mechanical integrity of the PAA/hemicellulose hydrogels showed higher water swelling capacity and less fragility than the parent PAA hydrogels and they retained the heavy metal ion absorption ability of the PAA component, even in the presence of the least purified hemicellulose fraction. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41695.  相似文献   

6.
Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra‐red (FT‐IR) spectroscopy and two‐dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the opportunity for reaction. FT‐IR analyses confirm the formation of esters, carbamates, and phosphoramides on the gluten samples. 2DE protein composition topographies indicate a shift in the isoelectric point (pI) to lower values along with extensive inter‐protein linkages. A free swelling capacity (FSC) in excess of 85× the mass of the converted gluten is obtainable using a conservative vacuum‐assisted method to recover and quantify the properties of the wet gel. Other methods produce FSC values nearly twice as high. FSC for acid‐treated gluten is lower for solutions containing solutes than the FSC for deionized water. Native gluten produces FSC values that are about 2% of those for treated gluten, but these values are less sensitive to the presence of ionic solutes and increase slightly in the presence of aqueous ethanol up to a mole fraction of 0.25.. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39440.  相似文献   

7.
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338.  相似文献   

8.
A set of novel bio‐based star‐shaped thermoset resins was synthesized via ring‐opening polymerization of lactide and employing different multi‐hydroxyl core molecules, including ethylene glycol, glycerol, and erythritol. The branches were end‐functionalized with methacrylic anhydride. The effect of the core molecule on the melt viscosity, the curing behavior of the thermosets and also, the thermomechanical properties of the cured resins were investigated. Resins were characterized by Fourier‐transform infrared spectroscopy, 13C‐NMR, and 1H‐NMR to confirm the chemical structure. Rheological analysis and differential scanning calorimetry analysis were performed to obtain the melt viscosity and the curing behavior of the studied star‐shaped resins. Thermomechanical properties of the cured resins were also measured by dynamic mechanical analysis. The erythritol‐based resin had superior thermomechanical properties compared to the other resins and also, lower melt viscosity compared to the glycerol‐based resin. These are of desired characteristics for a resin, intended to be used as a matrix for the structural composites. Thermomechanical properties of the cured resins were also compared to a commercial unsaturated polyester resin and the experimental results indicated that erythritol‐based resin with 82% bio‐based content has superior thermomechanical properties, compared to the commercial polyester resin. Results of this study indicated that although core molecule with higher number of hydroxyl groups results in resins with better thermomechanical properties, number of hydroxyl groups is not the only governing factor for average molecular weight and melt viscosity of the uncured S‐LA resins. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45341.  相似文献   

9.
Poly(lactide) (PLA) and poly(methyl methacrylate) (PMMA) are melt compounded with chopped glass fiber using laboratory scale twin‐screw extrusion. Physical properties are examined using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile testing, impact testing, X‐ray computed tomography (CT) scanning, and field emission scanning electron microscopy (FE‐SEM). Molecular weight is determined using gel permeation chromatography (GPC). Miscibility of the blends is implied by the presence of a single glass transition temperature and homogeneous morphology. PLA/PMMA blends tend to show positive deviations from a simple linear mixing rule in their mechanical properties (e.g., tensile toughness, modulus, and stress at break). The addition of 40 wt % glass fiber to the system dramatically increases physical properties. Across all blend compositions, the tensile modulus increases from roughly 3 GPa to roughly 10 GPa. Estimated heat distortion temperatures (HDTs) are also greatly enhanced; the pure PLA sample HDT increases from 75 °C to 135 °C. Fiber filled polymer blends represent a sustainable class of earth abundant materials which should prove useful across a range of applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44868.  相似文献   

10.
Natural rubber (NR) grafted with poly(vinyl propionate) (NR-g-PVP) was prepared by emulsion polymerization. The monomer content was set at 5, 10, 20, and 30 wt%. The chemical structure of NR-g-PVP was confirmed by 1H-NMR and FTIR techniques. The grafting parameters of purified NR-g-PVP were evaluated. Binary (PLA/NR and PLA/NR-g-PVP) and ternary (PLA/NR/NR-g-PVP) blends were prepared by melt blending using a twin-screw extruder. The percentage of grafted PVP on NR affected morphology, thermal and mechanical properties of the blends. In binary blends, 5% grafting showed the greatest improvement of toughness and ductility with PLA, whereas there was no improvement in the mechanical properties of PLA/NR blend from using NR-g-PVP as a compatibilizer. The mechanical properties of the blends are related to mutual compatibility of the components. Good interfacial adhesion and proper particle size of NR were the key factors contributing to mechanical properties.  相似文献   

11.
Itaconic acid (IA) has potential as a compatibilizing agent in polymeric blends due to its unique chemical characteristics. Sodium hypophosphite (SHP) has been studied as a catalyst in esterifying reactions using multicarboxylic acids. Starch/poly(butylene adipate‐co‐terephthalate) blown films containing IA, with and without SHP, were produced. The film containing IA presented higher tensile strength (8.166 MPa) and elongation (891.473%) than the control film (5.548 MPa and 487.637%, respectively). When SHP was added (sample IA‐SHP), tensile strength increased even more (9.215 MPa); however, elongation (636.821%) was lower than in the IA film. This behavior was attributed to crosslinking between two starch itaconoate molecules intermediated by SHP. The increase in the compatibility between the polymeric phases justified the lower permeability to water vapor of the IA‐SHP films and was responsible for the production of films with a more compact and homogeneous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46629.  相似文献   

12.
Chitosan nanoparticles (Ch NPs) with individual particles 10–30 nm in size and average aggregate sizes of 240 nm were prepared via ionic gelation. Ordered mesoporous Mobil Composition of Matter No. 41 (MCM‐41) with a surface area of 1590 m2/g was prepared via a sol–gel method. The nanocomposites were prepared via the in situ dispersion of MCM‐41 in chitosan followed by ionic gelation with a multivalent anion to produce MCM‐41‐impregnated Ch NPs or via the mixture of dispersed MCM‐41 with preprepared Ch NPs to produce Ch NPs supported on MCM‐41. The beryllium‐uptake efficiency was studied with different pH values, contact times, and initial Be(II) concentrations. The maximum achieved uptake efficiencies of the nanocomposites (95% and 96%) were superior to that of MCM‐41 (38%) and higher than that of Ch NPs (90%). The nanocomposite formulas facilitated post‐treatment separation while maintaining a high beryllium‐uptake efficiency. The Be(II)‐uptake process for all of the materials followed the pseudo‐second‐order kinetic model and both the Langmuir and Freundlich isotherms. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46040.  相似文献   

13.
In the quest on improving composite formulations for environmental sustainability, maleic acid (MA) cross-linked poly(vinyl alcohol) (PVA)-α-chitin composites reinforced by oil palm empty fruit bunch fibers (OPEFB)-derived nanocellulose crystals (NCC) had been successfully prepared. Based on the Fourier transform infrared (FTIR) spectroscopic analysis, it was proven that molecular interactions of the cross-linker to the polymeric networks was through conjugated ester linkage. Differential scanning calorimetry (DSC) showed that the influence of MA was minimal toward crystallization in the PVA/chitin/NCC composite. Maximum tensile strength, elongation at break and Young's modulus of the respective PVA/chitin/NCC composites were achieved at different content of MA, dependent on the PVA/chitin mass ratio. Among all compositions, a maximum Young's modulus was achieved at 30 wt% MA loading in PVA/chitin-30/NCC, amounting to 2,413.81 ± 167.36 MPa. Moreover, the mechanical properties and selected physicochemical properties (swelling, gel content, and contact angle) of the PVA/chitin/NCC composites could be tailored by varying the chitin content (10–30 wt%) and MA content (10–50 wt% based on total mass of composite). In brief, this chemically cross-linked PVA-based biocomposites formulated with sustainable resources exhibited tunable physicochemical and mechanical properties.  相似文献   

14.
Remediation of hexavalent chromium - Cr(VI) at acidic pH using polyaniline coated bacterial cellulose porous mat (BC/PANi) is presented and the possible mechanism is discussed. The efficacy of BC/PANi mats in remediation of Cr(VI) was studied by varying pH (pH 1, 2, 3, and 5) and initial Cr(VI) concentrations (250–1000 ppm) of the solution. The BC/PANi (50 mg) mat was able to completely reduce 2000 ppm Cr(VI) into Cr(III) in a 20 ml solution at pH ~ 1 in 24 h. An increasing chromium removal efficiency was observed with decreasing solution pH; reaching a maximum removal capacity of ~920 mg/g at pH 1. The proposed mechanism of negatively charged Cr(VI) ions removal by BC/PANi mat is adsorption and simultaneous reduction into Cr(III), followed by desorption of Cr(III) from the mat. The role of temperature and co-existing anions like sulphate, nitrate and chloride found in industrial sludge were also investigated for removal efficiency of Cr(VI) at acidic pH ~ 1. The adsorption kinetics of Cr(VI) on polyaniline surface followed a pseudo-second-order model with reduction of Cr(VI) into Cr(III) as rate-limiting step. The reduced Cr(III) from the media was further recovered by neutralizing the pH of the solution.  相似文献   

15.
Chitosan/Spirulina bio‐blends (CSBB) in films form were developed to be an alternative/renewable biosorbent, able to remove anionic and cationic dyes from aqueous solutions. CSBB potential as biosorbent was investigated for cationic dye Methylene Blue (MB), and anionic dyes Tartrazine Yellow (TY) and Reactive Black 5 (RB5). Chitosan and Spirulina samples were obtained and characterized, and CSBB films were prepared with different chitosan/Spirulina ratios. The CSBB films characteristics, as, mechanical properties, thermal profile, crystallinity, functional groups, morphology, and biosorption potential were strongly dependent of chitosan/Spirulina ratio. CSBB films preserved its mechanical structures at pH from 4.0 to 8.0. The biosorption capacities were 120, 110, and 100 mg g?1 for RB5, TY, and MB, respectively. The increase of chitosan amount favored the TY and RB5 biosorption; however, the increase of Spirulina amount favored the MB biosorption. Thus, the CSBB in film form is a renewable biosorbent suitable to remove anionic and cationic dyes from aqueous solutions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44580.  相似文献   

16.
An acrylate‐functional soybean oil‐based macromonomer (SoyAA‐1) was synthesized in high yields utilizing sequential amidation and acrylation processes to serve as an internal plasticizer in emulsion polymers. The structure and structure–property relationships of this unique macromonomer were validated with FTIR, NMR, and LC‐MS. The viability of SoyAA‐1 as a comonomer in emulsion polymerization was established via copolymerization with methyl methacrylate (MMA) at varying copolymer weight compositions. The effect of increasing SoyAA‐1 levels and concomitantly higher allylic functionality was measured through film coalescence, minimum film forming temperature, and initial and progressively increasing glass transition temperature(s). The results indicate that synthetic modification of a renewable resource, soybean oil, can yield a valuable monomer that can be copolymerized in high yields via emulsion polymerization to produce practical and mechanically stable latexes for a variety of coatings applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40249.  相似文献   

17.
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends and PLA/PBAT/Al2O3 nanocomposites were fabricated via solution blending. The influence of PBAT and Al2O3 content on the thermal stability, flexural properties, impact strength, and morphology of both the PLA/PBAT blends and the PLA/PBAT/Al2O3 nanocomposites were investigated. The impact strength of the PLA/PBAT/Al2O3 nanocomposites containing 5 wt% PBAT increased from 4.3 to 5.2 kJ/m2 when the Al2O3 content increased from 0 to 1 wt%. This represents a 62% increase compared to the impact strength of pristine PLA and a 20% increase compared to the impact strength of PLA/PBAT blends containing 5 wt% PBAT. Scanning electron microscopy imaging revealed that the Al2O3 nanoparticles in the PLA/PBAT/Al2O3 nanocomposites function as a compatibilizer to improve the interfacial interaction between the PBAT and the PLA matrix.  相似文献   

18.
Hydrogels of a natural origin have attracted considerable attention in the field of tissue engineering due to their resemblance to ECM, defined degradability and compatibility with biological systems. In this study, we introduced carrageenan into a gelatin network, creating IPN hydrogels through biological methods of enzymatic and ionic crosslinking. Their gelation processes were monitored and confirmed by rheology analysis. The combination of biochemical and physical crosslinking processes enables the formation of biohydrogels with tunable mechanical properties, swelling ratios and degradation behaviors while maintaining the biocompatibilities of natural materials. The mechanical strength increased with an increase in carrageenan content while swelling ratio and degradability decreased correspondingly. In addition, the IPN hydrogels were shown to support adhesion and proliferation of L929 cell line. All the results highlighted the use of biological crosslinked gelatin‐carrageenan IPN hydrogels in the context of tissue engineering. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 10.1002/app.40975.  相似文献   

19.
Methyl methacrylate and ethylene glycol dimethacrylate or 1,6‐hexanediol dimethacrylate (HDDMA) were copolymerized in the presence of a nonsolvent (heptane) for poly(methyl methacrylate) (PMMA) to examine the phenomenon of polymerization‐induced phase separations (PIPS) in branched PMMA synthesis. The process was dependent upon the amount of nonsolvent and crosslinker in the reaction mixture. Gel particles were obtained in the majority of phase‐separated systems, and their formation was promoted by the preferential partition of monomer and crosslinker into the precipitated polymer phase during the phase separation process. Experimental data showed that, because of its lower solubility parameter, HDDMA can be used as crosslinker to minimize gel particle formation in systems where PIPS is present. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1462–1468, 2005  相似文献   

20.
Microfibers of kraft lignin blended with poly(ethylene oxide) (PEO) were produced by electrospinning of the solution of lignin and high molecular weight poly(ethylene oxide) (PEO) in alkaline water. Interactions between lignin and PEO in alkaline aqueous solutions create association complexes, which increases the viscosity of the solution. The effect of polymer concentration, PEO molecular weight, and storage time of solution before spinning on the morphology of the fibers was studied. It showed that after one day the viscosity dropped and fiber diameter decreased. Results from the solutions in alkaline water and N,N‐dimethylformamide (DMF) with different polymer concentrations were compared. The 7 wt % of (Lignin/PEO: 95/5 wt/wt) in alkaline aqueous solution was successfully spun and the ratio of PEO in lignin/PEO mixture could be further reduced. In comparison, higher concentrations were needed to prepare a spinning solution in DMF and fiber diameters were in a much smaller range. The final target of spinning lignin is to produce carbonized fibers. Fibers spun from aqueous solutions had lower PEO content, which is a big advantage for the carbonization process as it reduces the challenges regarding melting of the fibers or void creation during carbonization. Furthermore, the larger diameter of these fibers inhibits disintegration of the carbonized fibers, which happens due to the mass loss during the process. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41260.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号