首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Objective

To review the major hardware components of low-field point-of-care MRI systems which affect the overall sensitivity.

Methods

Designs for the following components are reviewed and analyzed: magnet, RF coils, transmit/receive switches, preamplifiers, data acquisition system, and methods for grounding and mitigating electromagnetic interference.

Results

High homogeneity magnets can be produced in a variety of different designs including C- and H-shaped as well as Halbach arrays. Using Litz wire for RF coil designs enables unloaded Q values of ~ 400 to be reached, with body loss representing about 35% of the total system resistance. There are a number of different schemes to tackle issues arising from the low coil bandwidth with respect to the imaging bandwidth. Finally, the effects of good RF shielding, proper electrical grounding, and effective electromagnetic interference reduction can lead to substantial increases in image signal-to-noise ratio.

Discussion

There are many different magnet and RF coil designs in the literature, and to enable meaningful comparisons and optimizations to be performed it would be very helpful to determine a standardized set of sensitivity measures, irrespective of design.

  相似文献   

2.
Parsa  Javad  Webb  Andrew 《Magma (New York, N.Y.)》2023,36(3):429-438
Objective

To simulate the magnetic and electric fields produced by RF coil geometries commonly used at low field. Based on these simulations, the specific absorption rate (SAR) efficiency can be derived to ensure safe operation even when using short RF pulses and high duty cycles.

Methods

Electromagnetic simulations were performed at four different field strengths between 0.05 and 0.1 T, corresponding to the lower and upper limits of current point-of-care (POC) neuroimaging systems. Transmit magnetic and electric fields, as well as transmit efficiency and SAR efficiency were simulated. The effects of a close-fitting shield on the EM fields were also assessed. SAR calculations were performed as a function of RF pulse length in turbo-spin echo (TSE) sequences.

Results

Simulations of RF coil characteristics and B1+ transmit efficiencies agreed well with corresponding experimentally determined parameters. Overall, the SAR efficiency was, as expected, higher at the lower frequencies studied, and many orders of magnitude greater than at conventional clinical field strengths. The tight-fitting transmit coil results in the highest SAR in the nose and skull, which are not thermally sensitive tissues. The calculated SAR efficiencies showed that only when 180° refocusing pulses of duration ~ 10 ms are used for TSE sequences does SAR need to be carefully considered.

Conclusion

This work presents a comprehensive overview of the transmit and SAR efficiencies for RF coils used for POC MRI neuroimaging. While SAR is not a problem for conventional sequences, the values derived here should be useful for RF intensive sequences such as T, and also demonstrate that if very short RF pulses are required then SAR calculations should be performed.

  相似文献   

3.
Objective

Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T.

Methods

The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array.

Results

The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom.

Conclusion

The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.

  相似文献   

4.
Introduction

Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T.

Methods

Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity.

Results

For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays.

Discussion and conclusion

For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.

  相似文献   

5.
There are three principal magnetic fields in magnetic resonance imaging (MRI) that may interact with medical implants. The static field will induce force and torque on ferromagnetic objects. The pulsed gradients are of audio frequency and the implant may concentrate the induced currents, with a potential for nerve stimulation or electrical inference. The currents induced in the body by the radio frequency (RF) field may also be concentrated by an implant, resulting in potentially dangerous heating of surrounding tissues. This paper presents basic information about MRI interactions with implants with an emphasis on RF-induced heating of leads used for deep brain stimulation (DBS). The temperature rise at the electrodes was measured in vitro as a function of the overall length of a DBS lead at an RF frequency of 64 MHz. The maximal temperature rise occurred for an overall length of 41 cm. The method of moments was used to calculate the current induced in the lead. From the induced currents, the RF power deposition near the electrodes was calculated and the heat equation was used to model the temperature rise. The calculated temperature rises as a function of lead length were in good agreement with the measured values.  相似文献   

6.
Object

Improve shimming capabilities of ultra-high field systems, with addition of an accessible low-complexity B0 shim array for head MRI at 7 T.

Materials and methods

An eight channel B0 shim coil array was designed as a tradeoff between shimming improvement and construction complexity, to provide an easy to use shim array that can be employed with the standard 7 T head coil. The array was interfaced using an open-source eight-channel shim amplifier rack. Improvements in field homogeneity for whole-brain and slice-based shimming were compared to standard second-order shimming, and to more complex higher order dynamic shimming and shim arrays with 32 and 48 channels.

Results

The eight-channel shim array provided 12% improvement in whole brain static shimming and provided 33% improvement when using slice-based shimming. With this, the eight-channel array performed similar to third-order dynamic shimming (without the need for higher order eddy current compensation). More complex shim arrays with 32 and 48 channels performed better, but require a dedicated RF coil.

Discussion

The designed eight-channel shim array provides a low-complexity and low-cost approach for improving B0 field shimming on an ultra-high field system. In both static and dynamic shimming, it provides improved B0 homogeneity over standard shimming.

  相似文献   

7.
Objectives

The Iseult MRI is an actively shielded whole-body magnet providing a homogeneous and stable magnetic field of 11.7 T. After nearly 20 years of research and development, the magnet successfully reached its target field strength for the first time in 2019. This article reviews its commissioning status, the gradient–magnet interaction test results and first imaging experience.

Materials and methods

Vibration, acoustics, power deposition in the He bath, and field monitoring measurements were carried out. Magnet safety system was tested against outer magnetic perturbations, and calibrated to define a safe operation of the gradient coil. First measurements using parallel transmission were also performed on an ex-vivo brain to mitigate the RF field inhomogeneity effect.

Results

Acoustics measurements show promising results with sound pressure levels slightly above the enforced limits only at certain frequency intervals. Vibrations of the gradient coil revealed a linear trend with the B0 field only in the worst case. Field monitoring revealed some resonances at some frequencies that are still under investigation.

Discussion

Gradient-magnet interaction tests at up to 11.7 T are concluded. The scanner is now kept permanently at field and the final calibrations are on-going to pave the road towards the first acquisitions on volunteers.

  相似文献   

8.
Objective: Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. Materials and methods: The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Results: Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30K/3.5 K for an unsegmented/ segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. Conclusion: The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.  相似文献   

9.
Abstract

Thin film barium strontium titanate (BST) shows great promise for voltage tunable dielectric devices for use at RF and microwave frequencies. An MOCVD process has been developed for production of BST, resulting in films with very low losses (as low as 0.002–0.004) and tunabilities over 50% at low operation voltages. With these values of BST loss, overall device quality factors at RF (100 MHz+) frequencies are primarily limited by losses in the thin metal electrodes, such as Pt, normally used for ferroelectric thin films. The bottom electrode in parallel plate capacitor structures is particularly challenging, since it must provide a good growth surface for BST and be stable at high (>600 °C) growth temperatures in an oxidizing atmosphere yet have high conductivity and compatibility with Si or SiO2/Si substrates. These challenges have previously prevented use of Pt thicknesses over 0.1–0.2 urn. Our solution to this problem, involves combinations of adhesion layers at the Pt/SiO2 interface and embedded stabilization layers to make functioning Pt bottom electrodes as thick as 2 μm. Devices with dielectric Q factors over 150 at 100 MHz (tan δ ~ 0.006 as measured and modeled by S-parameters) and overall device Q factors over 50 at 30 MHz are described. We have also inserted these devices into tunable filters, achieving tunabilities of 50% and low insertion losses (0.3 dB) at RF frequencies.  相似文献   

10.
Objective

We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set.

Research fields

The 14 Tesla system can be considered a ‘mesocope’: a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes.

Conclusions

The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.

  相似文献   

11.
Abstract

Today's phased-array antennas use hundreds of radiating elements that use relatively high-loss phase shifters that operate over a limited bandwidth. The number of elements and the phase shifter losses affect the overall cost of the antenna system. Ferroelectric RF phase shifters have the potential to meet the low-loss, low-cost requirements driving many phased-array applications. Some of the issues affecting the development of ferroelectric phase shifters include ferroelectric tunability, dielectric losses, conductor losses, and impedance mismatch. We used the measured tunability (250 kHz, room temperature), dielectric constant, and loss tangent (10 GHz, room temperature) of Ba1-xSrx/TiO3 (0.4x 0.6) with various amounts of MgO additive, 0 to 60 wt.%, to estimate the device performance of microstrip phase shifters. The electromagnetic model of the microstrip (which uses a standard 3-mil-wide 1-oz. copper line, 3-mil-thick BST/MgO composite and the bias criteria of 2 V/μm) has produced performance benchmarks for a number of composites providing 360° of phase shift. While the accuracy of the electromagnetic model used to evaluate these materials has limitations, the results do provide some insight as to which materials may be better suited for 10-GHz phase shift devices.  相似文献   

12.
ABSTRACT

In this study, We investigated the possibility of use of multi-stack type piezoelectric devices. The dielectric and piezoelectric properties of the device were examined. To match the external vibration frequency with the device resonant frequency, the metal type manipulator was combined with the multi-stack device. Under an external force of 1 G at 120 Hz, the device exhibited a voltage of 12 V and a power of 60 mw in resonance mode.  相似文献   

13.
ABSTRACT

The premier candidate active material for tunable microwave phase shifter devices is single composition, paraelectric BaSrTiO3 (BST). However, there is concern that in practical applications the device performance will be compromised due to the temperature dependence of the BST based device capacitance. We report a device design which controls the magnitude and the sign of the temperature coefficient of capacitance (TCC) via a multilayer paraelectric BST/buffer layer/ferroelectric BST coplanar device structure. To realize this multilayer device structure we have designed, fabricated, and optimized a 10 mol% Al doped Ta2O5 barrier layer with low loss (tan δ = 0.004), moderate permittivity (?r = 42.8), low TCC (?20 ppm/°C), and a low bias stability of capacitance (0.4%). The thin film integration of the barrier layer with the BST layers was optimized for structure, microstructure, interfacial/surface morphology, and dielectric properties as a function of Al doping concentration, annealing temperature, material growth and integration process parameters.  相似文献   

14.
ABSTRACT

The moving-coil voltage regulator still provides advantages over thyristor and other existing voltage regulators. In this paper prediction of the device behaviour and performance is facilitated using a simple procedure. More insight into behaviour of the different parts of the regulator is provided. Detail equivalent circuit is developed. Parameters of the developed equivalent circuit do not rely on the position of the moving coil.  相似文献   

15.

Objectives

A new microfabrication method to produce low profile radio frequency (RF) resonant markers on catheter shafts was developed. A semi-active RF resonant marker incorporating a solenoid and a plate capacitor was constructed on the distal shaft of a 5 Fr guiding catheter. The resulting device can be used for interventional cardiovascular MRI procedures.

Materials and methods

Unlike current semi-active device visualization techniques that require rigid and bulky analog circuit components (capacitor and solenoid), we fabricated a low profile RF resonant marker directly on guiding the catheter surface by thin film metal deposition and electroplating processes using a modified physical vapor deposition system.

Results

The increase of the overall device profile thickness caused by the semi-active RF resonant marker (130 µm thick) was lowered by a factor of 4.6 compared with using the thinnest commercial non-magnetic and rigid circuit components (600 µm thick). Moreover, adequate visibility performance of the RF resonant marker in different orientations and overall RF safety were confirmed through in vitro experiments under MRI successfully.

Conclusion

The developed RF resonant marker on a clinical grade 5 Fr guiding catheter will enable several interventional congenital heart disease treatment procedures under MRI.
  相似文献   

16.
ABSTRACT

A novel PZT based micro acoustic device with the diaphragms clamped on all four edges has been studied. It can be used both as microphone and microspeaker. Compared with other piezoelectric micro acoustic devices, PZT based device has higher sensitivity for microphone and larger output acoustic pressure for microspeaker. The microfabrication process flow of this device is simple, and the transducer has excellent performance, miniature size and high reliability. The micro acoustic devices could be widely used in various practical audio frequencies and ultrasonic systems.  相似文献   

17.
Abstract

A new type of control concept for the superconducting generator with electromagnetic shield coil instead of damper shells is proposed to avoid field current variations and improve the dynamic performance during transients

This concept comprises both a field forcing system and a controller on the electromagnetic shield coil, which should be adjusted according to a specific control principle

Comparisons are made, in the dynamic performance, when employing the field forcing alone and when the shield coil control is added to it.  相似文献   

18.
Abstract

The results of structure investigations of SrTiO3 films depending on synthesis temperature are presented and electrical characteristics of 4-electrode planar capacitors based on prepared films are investigated. Finally, the technological conditions of high structure quality SrTiO3 films preparation are determined. SrTiO3 films prepared under these conditions possess electrical characteristics sufficient for room temperature MW applications in a wide frequency range., Keywords: RF magnetron sputtering, SrTiO3  相似文献   

19.
Abstract

Dry etching of PZT thin film capacitors with RuOx/Pt multilayered electrodes was studied to examine the etching effects. PZT films were deposited on RuOx/Pt/Ti/SiO2/ Si substrates by sol-gel process and Pt films were prepared by DC magnetron sputtering. PZT and Pt thin films were etched with Cl2/C2F6/Ar gas combination in an Inductively Coupled Plasma (ICP) by varying the etching parameters such as coil RF power, DC bias to wafer susceptor, and gas pressure.

Etching effects were investigated in terms of etch rate, etch selectivity, etch profiles, and electrical properties of etched capacitors. Quantitative analysis of the etching damage was obtained by calculating the shift of the coercive field and the switchable polarization in hysteresis loops. Finally, the etching damage mechanism was discussed and the optimization of etching processes for the fabrication of PZT capacitors was attempted to minimize the etching damage to ferroelectric capacitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号