首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of nanofibrous scaffolds were prepared by electrospinning of poly(vinyl alcohol) (PVA)/gelatin aqueous solution. PVA and gelatin was dissolved in pure water and blended in full range, then being electrospun to prepared nanofibers, followed by being crosslinked with glutaraldehyde vapor and heat treatment to form nanofibrous scaffold. Field emission scanning electron microscope (FESEM) images of the nanofibers manifested that the fiber average diameters decreased from 290 to 90 nm with the increasing of gelatin. In vitro degradation rates of the nanofibers were also correlated with the composition and physical properties of electrospinning solutions. Cytocompatibility of the scaffolds was evaluated by cells morphology and MTT assay. The FESEM images revealed that NIH 3T3 fibroblasts spread and elongated actively on the scaffolds with spindle‐like and star‐type shape. The results of cell attachment and proliferation on the nanofibrous scaffolds suggested that the cytotoxicity of all samples are grade 1 or grade 0, indicating that the material had sound biosafety as biomaterials. Compared with pure PVA and gelatin scaffolds, the hybrid ones possess improved biocompatibility and controllability. These results indicate that the PVA/gelatin nanofibrous have potential as skin scaffolds or wound dressing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The present study focused on the preparation of nanohydroxyapatite (nHA)-coated hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibrous scaffolds for bone tissue engineering application. The electrospun HEC/PVA scaffolds were mineralized via alternate soaking process. FESEM revealed that the nHA was formed uniformly over the nanofibers. The nHA mineralization enhanced the tensile strength and reduced the elongation at breakage of scaffolds. The wettability of the nanofibrous scaffolds was significantly improved. The in vitro biocompatibility of scaffolds was evaluated with human osteosarcoma cells. nHA-coated scaffolds had a favorable effect on the proliferation and differentiation of osteosarcoma cell and could be a potential candidate for bone regeneration.  相似文献   

3.
The main objective of this work was to prepare a tailor‐made electrospun nanofibrous samples based on poly(?‐caprolactone) (PCL) containing tetracycline hydrochloride (TC‐HCl) as a middle layer and poly(vinyl alcohol) (PVA) including phenytoin sodium (PHT‐Na) as lateral layers. The characterizations of the three‐layered electrospun samples were carried out by using SEM, ATR‐FTIR spectroscopy along with swelling/weight loss, UV–vis spectrophotometry as well as HPLC, antibacterial and MTT tests. The SEM micrograph images showed that the average diameter of PCL nanofibers was decreased from 243 ± 7 nm to 181 ± 5 nm by adding TC‐HCl. The hydrolytic degradation of PVA nanofibers in the exposure of phosphate buffer solution (PBS) was confirmed by ATR‐FTIR results in which a change at the intensity of the characteristic peak located at 3333 cm?1 corresponding to hydroxyl groups (? OH) was observed. The UV–vis outcomes revealed a sustained control release of TC‐HCl from the three‐layered nanofibrous samples (PVA/PCL/PVA) with an amount of about 43% compared to the PCL nanofibers which had an ultimate release of the drug about 79%. Furthermore, the HPLC chromatograms showed the released PHT‐Na from PVA nanofibers about 87%. Finally, the MTT assay along with the antibacterial evaluation exhibited that the surfaces of these electrospun three‐layered nanofibrous samples have no cytotoxicity as well as the controlled release of TC‐HCl from them enabled their prolonged use for preventing the bacterium growth such as S. aureus during 24‐h treatment time. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43309.  相似文献   

4.
Nanofibrous biocomposite scaffolds of chitosan (CS), PVA, and hydroxyapatite (HA) were prepared by electrospinning. The scaffolds were characterized by FTIR, SEM, TEM, and XRD techniques. Tensile testing was used for the characterization of mechanical properties. Mouse fibroblasts (L929) attachment and proliferation on the nanofibrous scaffold were investigated by MTT assay and SEM observation. FTIR, TEM, and XRD results showed the presence of nanoHA in the scaffolds. The scaffolds have porous nanofibrous morphology with random fibers in the range of 100–700 nm diameters. The CS/PVA (90/10) fibrous matrix (without HA) showed a tensile strength of 3.1 ± 0.2 MPa and a tensile modulus 10 ± 1 MPa with a strain at failure of 21.1 ± 0.6%. Increase the content of HA up to 2% increased the ultimate tensile strength and tensile modulus, but further increase HA up to 5–10% caused the decrease of tensile strength and tensile modulus. The attachment and growth of mouse fibroblast was on the surface of nanofibrous structure, and cells' morphology characteristics and viability were unaffected. A combination of nanofibrous CS/PVA and HA that mimics the nanoscale features of the extra cellular matrix could be promising for application as scaffolds for tissue regeneration, especially in low or nonload bearing areas. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The simultaneous effect of electrospun scaffold alignment and polymer composition on chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSC) is investigated. Aligned and randomly oriented polycaprolactone/poly(lactic-co-glycolic acid) (PLGA) hybrid electrospun scaffolds with two different ratios are fabricated by electrospinning. It is found that aligned nanofibrous scaffolds support higher chondrogenic differentiation of hBMMSCs compared to random ones. The aligned scaffolds show a higher expression level of chondrogenic markers such as type II collagen and aggrecan. It is concluded that the aligned nanofibrous scaffold with higher PLGA ratio could significantly enhance hBMMSC proliferation and differentiation to chondrocytes.  相似文献   

6.
Nanofibrous biocomposite scaffolds of poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by using electrospinning method. The microstructure, crystallinity, and morphology of the scaffolds were characterized through X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The mechanical properties were investigated by tensile testing. Moreover, Mouse Osteoblastic Cells (MC3T3‐E1) attachment and proliferation on the nanofibrous scaffolds were investigated by MTT [3‐(4,5‐dimeth‐ylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide] assay, SEM observation and fluorescence staining. XRD and FTIR results verify the presence of GO in the scaffolds. SEM images show the three‐dimensional porous fibrous morphology, and the average diameter of the composite fibers decreases with increasing the content of GO. The mechanical properties of the scaffolds are altered by changing the content of GO as well. The tensile strength and elasticity modulus increase when the content of GO is lower than 1 wt %, but decrease when GO is up to 3 and 5 wt %. MC3T3‐E1 cells attach and grow on the surfaces of the scaffolds, and the adding of GO do not affect the cells' viability. Also, MC3T3‐E1 cells are likely to spread on the PVA/GO composite scaffolds. Above all, these unique features of the PVA/GO nanofibrous scaffolds prepared by electrospinning would open up a wide variety of future applications in bone tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this study, random Poly (?-caprolactone) (PCL):Poly glycolic acid (PGA) nanofibrous scaffold with various PCL:PGA compositions were fabricated by electrospinning method. The nanofibrous scaffolds were characterized by SEM, contact angle measurement, ATR-FTIR, and tensile measurements. The results showed that with the increase of the concentration of PGA in spinning blend solution, the average diameter of nanofibers, hydrophilicity, and mechanical properties of the nanofibrous scaffolds increased. An in vitro degradation study of PCL:PGA nanofibers were conducted in phosphate-buffered saline, pH 7.2. The experiments confirm that increasing of PGA provides faster degradation rate in blended nanofibers. To assay the biocompatibility and cell behavior on the nanofibrous scaffolds, cell attachment and spreading of cardiac progenitor cells seeded on the scaffolds were studied. The results indicate that among electrospun nanofibrous scaffolds, the most appropriate candidate for myocardial tissue engineering scaffolds is PCL:PGA (65:35).  相似文献   

8.
The replacement of damaged or degenerated articular cartilage tissue remains a challenge, as this non-vascularized tissue has a very limited self-healing capacity. Therefore, tissue engineering (TE) of cartilage is a promising treatment option. Although significant progress has been made in recent years, there is still a lack of scaffolds that ensure the formation of functional cartilage tissue while meeting the mechanical requirements for chondrogenic TE. In this article, we report the application of flock technology, a common process in the modern textile industry, to produce flock scaffolds made of chitosan (a biodegradable and biocompatible biopolymer) for chondrogenic TE. By combining an alginate hydrogel with a chitosan flock scaffold (CFS+ALG), a fiber-reinforced hydrogel with anisotropic properties was developed to support chondrogenic differentiation of embedded human chondrocytes. Pure alginate hydrogels (ALG) and pure chitosan flock scaffolds (CFS) were studied as controls. Morphology of primary human chondrocytes analyzed by cLSM and SEM showed a round, chondrogenic phenotype in CFS+ALG and ALG after 21 days of differentiation, whereas chondrocytes on CFS formed spheroids. The compressive strength of CFS+ALG was higher than the compressive strength of ALG and CFS alone. Chondrocytes embedded in CFS+ALG showed gene expression of chondrogenic markers (COL II, COMP, ACAN), the highest collagen II/I ratio, and production of the typical extracellular matrix such as sGAG and collagen II. The combination of alginate hydrogel with chitosan flock scaffolds resulted in a scaffold with anisotropic structure, good mechanical properties, elasticity, and porosity that supported chondrogenic differentiation of inserted human chondrocytes and expression of chondrogenic markers and typical extracellular matrix.  相似文献   

9.
Random nanofibrous composite scaffolds of PVA/PCL bilayer were fabricated by electrospinning method. The bilayer nanofibrous scaffolds were subjected to detailed structural, morphological, chemical, and thermal analysis using XRD, SEM, FTIR, and DSC. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters for bilayer samples A, B, and C are 203, 252, and 244 nm, respectively. The obtained scaffolds have a porous structure with porosity of 77, 89.2, and 78.3 % for bilayer samples A, B, and C, respectively. FTIR analysis ensured complete evaporation of solvent and formation of non-interactive bilayers. Biocompatibility of the membranes was investigated by studying the adhesion of mouse NIH 3T3 fibroblasts for 72 h, and its enhanced adhesion and proliferation proved its mettle as a potential scaffold for tissue engineering applications.  相似文献   

10.
Silk sericin (SS) has been extensively used to fabricate scaffolds for tissue engineering. However, due to its inferior mechanical properties, it has been found to be a poor choice of material when being electrospun into nanofibrous scaffolds. Here, SS has been combined with poly(vinyl alcohol) (PVA) and electrospun to create scaffolds with enhanced physical properties. Crucially, these SS/PVA nanofibrous scaffolds were created using only distilled water as a solvent with no added crosslinker in an environmentally friendly process. Temperature has been shown to have a marked effect on the formation of the SS sol–gel transition and thus influence the final formation of fibers. Heating the spinning solutions to 70 °C delivered nanofibers with enhanced morphology, water stability and mechanical properties. This is due to the transition of SS from β‐sheets into random coils that enables enhanced molecular interactions between SS and PVA. The most applicable SS/PVA weight ratios for the formation of nanofibers with the desired properties were found to be 7.5/1.5 and 10.0/1.5. The fibers had diameters ranging from 60 to 500 nm, where higher PVA and SS concentrations promoted larger diameters. The crystallinity within the fibers could be controlled by manipulation of the balance between PVA and SS loadings. In vitro degradation (in phosphate buffer solution, pH 7.4 at 37 °C) was 30–50% within 42 days and fibers were shown to be nontoxic to skin fibroblast cells. This work demonstrates a new green route for incorporating SS into nanofibrous fabrics, with potential use in biomedical applications. © 2019 Society of Chemical Industry  相似文献   

11.
Corneal ulcer, which is brought on by a breach in the epithelial barrier, is a dangerous infection of the avascular corneal stroma. New treatment strategies are needed, suppressing the aggressive nature of the disease and including a combination of different drugs. In this study, vancomycin (VAN) and fluconazole (FLU) dual-drug loaded dual-layered polyvinyl alcohol and gelatin (PVA/GEL) nanofibrous patches are produced by electrospinning. Scanning electron microscopy (SEM) images show smooth surfaces are obtained for both pure and drug-loaded nanofibrous patches. The tensile test results report that loading the FLU and VAN separately into the PVA/GEL patches decrease both the tensile strength and elongation at break and it is further reduced when combining two drug-loaded layers in one patch. According to drug release results, the FLU and VAN-loaded nanofibrous patches show a controlled release profile extending up to 96 h. Moreover, PVA/GEL/FLU, PVA/GEL/VAN, and PVA/GEL/FLU/VAN nanofibrous patches display significant antimicrobial activity against Candida albicans and Staphylococcus aureus. SEM, 4'-6diamidynofenyloindol (DAPI) staining, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay show that PVA/FLU and PVA/GEL/FLU/VAN nanofibrous patches have a superior effect on NIH3T3 cell spreading and proliferation. The novelty of this study lays in the development of a potential dual drug rapid treatment for corneal ulcers of aggressive nature.  相似文献   

12.
Silk fibroin (SF)/gelatin blend nanofibers membranes as scaffolds were fabricated successfully via electrospinning with different composition ratios in formic acid. The formation of intermolecular hydrogen bonds and the conformational transition of SF provided scaffolds with excellent mechanical properties. FTIR and DTA analysis showed the SF/gelatin nanofibers had more β‐sheet structures than the pure SF nanofibers. The former's breaking tenacity increased from 0.95 up to 1.60 MPa, strain at break was 7.6%, average fiber diameter was 89.2 nm, porosity was 87%, and pore diameter was 142 nm. MTT, H&E stain, and SEM results showed that the adhesion, spreading, and proliferation of human umbilic vein endothelium cells (HUVECs) and mouse fibroblasts on the SF/gelatin nanofibers scaffolds were definitely better than that on the SF nanofibers scaffolds. The scaffolds could replace the natural ECM proteins, support long‐term cell growth, form three‐dimensional networks of the nanofibrous structure, and grow in the direction of fiber orientation. Our results prove that the addition of gelatin improved the mechanical and biological properties of the pure SF nanofibers, these SF/gelatin blend nanofiber membranes are desirable for the scaffolds and may be a good candidate for blood vessel engineering scaffolds. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
In order to improve the water-resistant ability of silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, 75% (v/v) ethanol vapor was used to post-treat electrospun nanofibers. SEM indicated that the treated SF and SF/P(LLA-CL) nanofibrous scaffolds maintained a nanofibrous structure and possessed good water-resistant ability. Characterization of (13)C CP-MAS NMR clarified that 75% (v/v) ethanol vapor could induce SF conformation from random coil or α-helix to β-sheet. Although the water contact showed that treated SF/P(LLA-CL) blended nanofibrous scaffolds were hydrophobic, the water uptake demonstrated that their hydrophilicity was greatly superior to those of pure P(LLA-CL) nanofibrous scaffolds. Furthermore, the treated SF/P(LLA-CL) nanofibrous scaffolds, both in dry state and wet state, could retain good mechanical properties. Therefore, 75% (v/v) ethanol vapor treatment might be an ideal method to treat SF and SF/P(LLA-CL) nanofibrous scaffolds for biomedical applications.  相似文献   

14.
Chitosan/poly(vinyl alcohol) (PVA) nanofibrous mats were prepared by the electrospinning method. The morphology and structure of electrospun nanofibers were investigated by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. SEM images showed that the uniform and bead-free fibers were obtained at concentrations greater than 8 wt%. Chitosan/PVA mats were irradiated with different doses (50–200 kGy) of 60Co gamma rays. The effect of irradiation dose on the mechanical and thermal properties of these films was also investigated. Increasing the irradiation dose led to a decrease in tensile strength. FT-IR and DSC demonstrated that there were strong intermolecular hydrogen bonds between the chitosan and PVA molecules.  相似文献   

15.
Chitosan/gelatin-based nanofibers display excellent biological performance in tissue engineering because of their biocompatible composition and nanofibrous structure with a high surface-to-volume ratio mimicking the native extracellular matrix. In this study, to save time and cost of experiments, a response surface methodology based on Box–Behnken design (BBD) is developed to predict the mean diameter of (chitosan:gelatin)/poly(vinyl alcohol) (PVA) nanofibers in three volume ratios of chitosan:gelatin by considering PVA percentage, applied voltage, and flow rate as input variables. The morphology and chemical composition of nanofibers are investigated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The optimum conditions to yield the minimum diameter of nanofibers with chitosan:gelatin ratios of 25:75, 50:50, and 75:25 are found and result in 165, 121, and 92 nm, respectively, which show good accordance with BBD estimated results. The tensile testing indicates that nanofibers containing higher ratio of chitosan:gelatin result in higher tensile stress and lower toughness and tensile strain. The water contact angle analysis (WCA) shows the appropriate hydrophilicity of crosslinked nanofibers. The MTT assay shows excellent cell viability and cell attachment of nanofibers for mouse fibroblast (L929) cells. The results indicate that optimum nanofibers are potent candidates for wound healing applications.  相似文献   

16.
Alginate is an interesting natural biopolymer for many of its merits and good biological properties. This paper investigates the electrospinning of sodium alginate (NaAlg), NaAlg/PVA‐ and NaAlg/PEO‐ blended systems. It was found in this research that although NaAlg can easily be dissolved in water, the aqueous NaAlg solution could not be electrospun into ultrafine nanofibers. To overcome the poor electrospinnability of NaAlg solution, synthetic polymers such as PEO and PVA solutions were blended with NaAlg solution to improve its spinnability. The SEM images of electrospun nanofibers showed that the alginate (2%, w/v)–PVA (8%, w/v) blended system in the volume ratio of 70 : 30 and the alginate (2%, w/v)–PEO (8% w/v) blended system in the volume ratio of 50 : 50 could be electrospun into finest and uniform nanofibers with average diameters of 118.3 nm (diameter distribution, 75.8–204 nm) and 99.1 nm (diameter distribution, 71–122 nm), respectively. Rheological studies showed a strong dependence of spinnability and fiber morphology on solution viscosity and thus on the alginate‐to‐synthetic polymer (PVA or PEO) blend ratios. FTIR studies indicate that there are the hydrogen bonding interactions due to the ether oxygen of PEO (or the hydroxyl groups of PVA) and the hydroxyl groups of NaAlg. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
Damage of the retinal pigmented epithelial cells causes various diseases such as age-related macular degeneration in retinal tissue. Nowadays, scientists are attempting to replace lost retinal cells with healthy and efficient cells that provide better conditions for recovering and preventing blindness. In this study, gelatin/chitosan nanofibrous scaffolds with mean diameters of 180?nm were fabricated for subretinal space through electrospinning. Thickness and morphology of the gelatin–chitosan scaffolds were analyzed by scanning electron microscopy (SEM). The results showed that the high rate of degradation, i.e., 90% damage was obtained after 1 month. The cell viability of gelatin/chitosan nanofibers were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The SEM results of cultured RPE on gelatin/chitosan scaffolds showed the appropriate adhesion of cells on the substrate. The results of the identity of RPE cells cultured on the scaffolds indicated that a large number of cells strongly expressed RPE65 and cytokeratin 8/18.  相似文献   

18.
Electrospinning is a well-known technique for producing nanofibers using synthetic and natural polymers like mucilage. In this study, Plantago major Mucilage (PMM) was blended with polyvinyl alcohol (PVA) as a nontoxic adding agent, in order to produce electrospun nanofiber. Electrospinning parameters (voltage, tip-to-collector distance, feed rate, and PMM/PVA ratio) were optimized and solution properties were analyzed. The morphology of nanofibers was investigated using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET). Mechanical strength of nanofibers was determined, and cell viability on nanofibers was discussed by MTT assay. The results of SEM indicated that the PMM/PVA (50/50) nanofibers obtained with average diameter of 250 nm. Viscosity, electrical conductivity, and surface tension of PMM/PVA solution were 550 Cp, 575 μS/cm, and 47.044 mN/m, respectively. FTIR and XRD results verified the exiting PMM in produced nanofibers and no chemical reaction between PMM and PVA. Improvement in mechanical strength and cell viability of nanofibers by adding PMM to PVA nanofibers indicated the potential application of PMM-based nanofibers for medical and food industries. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47852.  相似文献   

19.
The efficient delivery of daunorubicin loaded poly (lactic acid) (PLA)/multiwalled carbon nanotubes (MWCNT)/Fe3O4 composite nanofibers was investigated. The synthesized nanofibers were characterized using SEM, TEM, and XRD analysis. The proliferation inhibition effect of PLA/MWCNT/Fe3O4 nanofibrous scaffolds on leukemia K562 cell lines was investigated. The effect of nanofiber concentration on the daunorubicin delivery in the absence and presence of external magnetic field was also evaluated. The results indicated that the incorporation of daunorubicin into the prepared nanofibrous scaffold under applied magnetic field could have synergistic cytotoxic effect on leukemia cancer cells. The drug release mechanism followed the non-Fickian transport.  相似文献   

20.
Chitosan (CS) bicomponent nanofibers with an average diameter controlled from 100 to 50 nm were successfully prepared by electrospinning of CS and poly(vinyl alcohol) (PVA) blend solution. Finer fibers and more efficient fiber formations were observed with increased PVA contents. On this contribution, a uniform and ultrafine nanofibrous CS bicomponent mats filled with hydroxyapatite (HA) nanoparticles were successfully electrospun in a well devised condition. An increase in the contents of HA nanoparticles caused the conductivity of the blend solution to increase from 1.06 mS/cm (0 wt % HA) to 2.27 mS/cm (0.5 wt % HA), 2.35 mS/cm (1.0 wt % HA), respectively, and the average diameter of the composite fibers to decrease from 59 ± 10 nm(0 wt % HA) to 49 ± 10 nm (0.5 wt % HA), 46 ± 10 nm (1.0 wt % HA), respectively. SEM images showed that some particles had filled in the nanofibers whereas the others had dispersed on the surface of fibers, and EDXA results indicated that both the nanoparticles filled in the nanofibers and those adhered to the fibers were HA particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号